Skip to main content

Prediction of MHC Class I Binding Peptides Using Fourier Analysis and Support Vector Machine

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4223))

Included in the following conference series:

  • 1615 Accesses

Abstract

Processing and presentation of major histocompatibility complex class I antigens to cytotoxic T-lymphocytes is crucial for immune surveillance against intracellular bacteria, parasites, viruses and tumors. Identification of antigenic regions on pathogen proteins will play a pivotal role in designer vaccine immunotherapy. We have developed a novel method that identifies MHC class I binding peptides from peptides sequences. For the first time we present a method for MHC class I binding peptides prediction using Fourier analysis and support vector machines (SVM). Using cross-validation, we demonstrate that this novel prediction technique has a reasonable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldi, P., Brunak, S.: Bioinformatics, the machine learning approach. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Brusic., V., Rudy, G., Harrison, L.C.: Prediction of MHC binding peptides using artificial neural networks. In: Stonier, R.J., Yu, X.S. (eds.) Complex Systems: Mechanism of Adaptation, pp. 253–260. IOS Press, Amsterdam (1994)

    Google Scholar 

  3. Brusic, V., Rudy, G., Harrison, L.C.: MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic Acids Res. 26, 368–371 (1998)

    Article  Google Scholar 

  4. Buus, S., Lauemoller, S.L., Worning, P., Kesmir, C., Frimurer, T., Corbet, S., Fomsgaard, A., Hilden, J., Holm, A., Brunak, S.: Sensitive quantitative predictions of peptide-MHC binding by a ’Query by Committee’ artificial neural network approach. Tissue Antigens 62, 378–384 (2003)

    Article  Google Scholar 

  5. Castellino, F., Zhong, G., Germain, R.N.: Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture. Hum. Immunol. 54, 159–169 (1997)

    Article  Google Scholar 

  6. Dawn, C., Purnima, G., Eoin, F., Shankar, S.: MitoProteome: Mitochondrial Protein Sequence Database and Annotation System. Nucleic Acids Research 32, 463–467 (2004)

    Article  Google Scholar 

  7. Dönnes, P., Elofsson, A.: Prediction of MHC I binding peptides, using SVMHC. BMC Bioinformatics 3, 1–8 (2002)

    Article  Google Scholar 

  8. Gribskov, M., McLachlan, A.D., Eisenberg, D.: Profile analysis: detection of distantly related proteins. Proc. Natl. Acad. Sci. USA 84, 4355–4358 (1987)

    Article  Google Scholar 

  9. Gulukota, K., Sidney, J., Sette, A., DeLisi, C.: Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J. Mol. Biol. 267, 1258–1267 (1997)

    Article  Google Scholar 

  10. Kawashima, S., Kanehisa, M.: AAindex: amino acid index database. Nucleic Acids Res. 28, 374 (1999)

    Article  Google Scholar 

  11. Mamitsuka, H.: MHC molecules using supervised learning of hidden Markov models. Proteins: Structure, Function and Genetics 33, 460–474 (1998)

    Article  Google Scholar 

  12. Matthews, B.: Comparison of the predicted and observer secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta. 405, 442–451 (1975)

    Google Scholar 

  13. Nielsen, M., Lundegaard, C., Worning, P., Hvid, C.S., Lamberth, K., Buus, S., Brunak, S., Lund, O.: Improved prediction of MHC class and class epitopes using a novel Gibbs sampling approach. Bioinformatics 20, 1388–1397 (2004)

    Article  Google Scholar 

  14. Nielsen, M., Lundegaard, C., Worning, P., Lauemoller, S.L., Lamberth, K., Buus, S., Lund, O.: Reliable prediction of T-cell epitopes using neural networks with novel sequence representation. Protein Sci. 12, 1007–1017 (2003)

    Article  Google Scholar 

  15. Parker, K.C., Bednarek, M.A., Coligan, J.E.: Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152, 163–175 (1994)

    Google Scholar 

  16. Rammensee, H.G., Friede, T., Stevanovic, S.: MHC ligands and peptide motifs: first listing. Immunogenetics 41, 962–965 (1995)

    Article  Google Scholar 

  17. Rammensee, H.G., Bachmann, J., Emmerich, N.P., Bachor, O.A., Stevanovic, S.: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999)

    Article  Google Scholar 

  18. Rotzschke, O., Falk, K., Stevanovic, S., Jung, G., Rammensee, H.G.: Peptide motifs of closely related HLA class I molecules encompass substantial differences. European Journal of Immunology 22, 2453–2456 (1992)

    Article  Google Scholar 

  19. Schueler-Furman, O., Altuvia, Y., Sette, A.: Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Protein Science 9, 1838–1846 (2000)

    Article  Google Scholar 

  20. Sette, A., Adorini, L., Colon, S.M., Buus, S., Grey, H.M.: Capacity of intact proteins to bind to MHC class II molecules. J. Immuno. 143, 1265–1267 (1989)

    Google Scholar 

  21. Shepherd, A.J., Gorse, D., Thornton, J.M.: Novel approach to the recognition of protein architecture from sequence using Fourier analysis and neural networks. Proteins: Structure, Function, and Genetics 50, 290–302 (2003)

    Article  Google Scholar 

  22. Srinivasan, K.N., Zhang, G.L., Khan, A.M., August, J.T., Brusic, V.: Rediction of calss I T-cell epitopes:evidence os presence of immunogical hot spots inside antigens. Bioinformatics 20(suppl. 1), 297–302 (2004)

    Article  Google Scholar 

  23. Swet, J.: Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988)

    Article  MathSciNet  Google Scholar 

  24. Vapnik, V.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  25. Yewdell, J., Bennink, J.: Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17, 51–81 (1999)

    Article  Google Scholar 

  26. ZhaoY., D., Pinilla, C., Valmori, D., Martin, R., Simon, R.: Application of Support vector machines for T-cell epitopes prediction. Bioinformatics 19, 1978–1984 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, F., Chen, Q. (2006). Prediction of MHC Class I Binding Peptides Using Fourier Analysis and Support Vector Machine. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2006. Lecture Notes in Computer Science(), vol 4223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881599_133

Download citation

  • DOI: https://doi.org/10.1007/11881599_133

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45916-3

  • Online ISBN: 978-3-540-45917-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics