Abstract
In this paper a study of similarity based classifier with generalized mean and ideal class vector approach is carried out. Before this ideal class vectors in the classifier has been very little investigated area and here focus is changed to study truly ’ideal’ vectors to represent class and similarity measure with its power parameters has been taken from best results in our previous studies. To find correct ideal vectors a search using differential evolution algorithm is carried out.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zadeh, L.: Similarity Relations and Fuzzy Orderings. Inform Sci. 3 (1971)
Luukka, P., Saastamoinen, K.: Similarity Classifier with p-mean and Generalized Łukasiewicz Algebra. International Journal of Hybrid Intelligent Systems (submitted)
Luukka, P., Saastamoinen, K., Könönen, V.: A Classifier Based on the Maximal Fuzzy Similarity in the Generalized Łukasiewicz-structure. In: Proceedings of the FUZZ-IEEE 2001 conference, Melbourne, Australia (2001)
Saastamoinen, K., Könönen, V., Luukka, P.: A Classifier Based on the Fuzzy Similarity in the Łukasiewicz-Structure with Different Metrics. In: Proceedings of the FUZZ-IEEE 2002 Conference, Hawaii, USA (2002)
Saastamoinen, K., Luukka, P.: Classification in the Łukasiewicz Algebra with Different Means. In: Proceedings of FUZZ-IEEE 2003 conference, St Louis, USA (2003)
Luukka, P., Meyer, A.: Comparison of two different dimension reduction methods in classification by arithmetic, geometric and harmonic similarity measure. In: Proceedings of FUZZ-IEEE 2004 conference, Budapest, Hungary (2004)
Luukka, P., Leppälampi, T.: Similarity classifier with generalized mean applied to medical data using different preprocessing methods. In: Proceedings of the FUZZ-IEEE 2005 conference, Reno, USA (to appear, 2005)
UCI Repository of Machine Learning Databases network document. Referenced 4.11.2004. Available: ftp://ftp.ics.uci.edu/pub/machine-learning-databases
Turunen, E.: Mathematics behind Fuzzy Logic. In: Advances in Soft Computing. Physica-Verlag, Heidelberg (1999)
Novak, V.: On the Syntactico-semantical Completeness of First-Order Fuzzy Logic. Kybernetika 26 (1990)
Klawonn, F., Castro, J.L.: Similarity in Fuzzy Reasoning. Math Soft. Comp. 2 (1995)
Donoho, D.L.: High-dimensional data analysis: The curses and blessings of dimensionality. In: Lecture at the Mathematical Challenges of the 21st Century conference of the American Math. Society, Los Angeles, August 6-11 (2000)
Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)
Martens, H., Naes, T.: Multivariate Calibration. John Wiley, UK (1989)
Yao, Y.Y., Wong, S.K.M., Butz, C.J.: On Information-Theoretic Measures of Attribute Importance. In: Pasific-Asia Conference on Knowledge Discovery and Data Mining (1999)
Yuan, L., Kesavan, H.K.: Minimum Entropy and Information Measurement. IEEE Transaction on System, Man, and Cybernetics 28(3) (1998)
Formato, F., Gerla, G., Scarpati, L.: Fuzzy Subgroups and Similarities. Soft Computing 3 (1999)
Coomans, D., Broeckaert, M., Jonckheer, M., Massart, D.L.: Comparison of Multivariate Discriminant Techniques for Clinical Data - Application to the Thyroid Functional State. Meth. Inform. Med. 22, 93–101 (1983)
Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. SIAM News 23(5), 1–18 (1990)
Street, W.N., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for breast tumor diagnosis. In: IS & T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, San Jose, CA, vol. 1905, pp. 861–870 (1993)
Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., Johannes, R.S.: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of the Symposium on Computer Applications and Medical Care, pp. 261–265 (1988)
Bologna, G.: Symbolic Rule Extraction from the DIMLP Neural Network. In: Neural Hybrid Systems. Springer, Heidelberg (to appear)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Luukka, P.: Similarity measure based classification, PhD thesis, Lappeenranta University of Technology, ISBN 952-214-162-3 (2005)
Price, K.V.: Differential Evolution: A Fast and Simple Numerical Optimizer. In: Biennial Conference of the North American (1996)
Luukka, P., Sampo, J.: Weighted Similarity Classifier Using Differential Evolution and Genetic Algorithm in Weight Optimization. Journal of Advanced Computational Intelligence and Intelligent Informatics 8(6), 591–598 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sampo, J., Luukka, P. (2006). Similarity Classifier with Generalized Mean; Ideal Vector Approach. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2006. Lecture Notes in Computer Science(), vol 4223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881599_142
Download citation
DOI: https://doi.org/10.1007/11881599_142
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45916-3
Online ISBN: 978-3-540-45917-0
eBook Packages: Computer ScienceComputer Science (R0)