Abstract
In this paper, we introduce an algorithm based on energy information obtained from Wavelet Transform for classification of medical images according to imaging modalities and body parts. Various medical image retrieval systems are available today that classify images according to imaging modalities, orientations, body parts or diseases. Generally these are limited to either some specific body part or some specific disease. Further, almost all of them deal with the DICOM imaging format. Our technique, on the other hand, can be applied to any of the imaging formats. The results are shown for JPEG images in addition to DICOM imaging format. We have used two types of wavelets and we have shown that energy obtained in either case is quite distinct for each of the body part.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lehmann, T.M., Schubert, H., Keysers, D., Kohnen, M., Wein, B.B.: The IRMA code for unique classification of medical images. In: Medical Imaging 2003: PACS and Integrated Medical Information Systems: Design and Evaluation, Proceedings of SPIE, vol. 5033, pp. 440–451 (2003)
Liu, Y., Rothfus, W.E., Kanade, T.: Tech. Report CMU-RI-TR-98-04, Robotics Institute, Carnegie Mellon University (1998)
Shyu, C., Brodley, C., Kak, A., Kosaka, A., Aisen, A., Broderick, L.: ASSERT, A physi-cian-in-the-loop content-based image retrieval system for HRCT image databases. Computer Vision and Image Understanding 75(1/2), 111–132 (1999)
Mojsilovic, A., Gomes, J.: Semantic based categorization, browsing and retrieval in medical image databases. In: Proc. Int. Conf. Image Processing, ICIP 2002, Rochester, New York (Sepember 2002)
Lehmann, T.M., Fischer, B., Güld, M.O., Thies, C., Keysers, D., Deselaers, T., Schubert, H., Wein, B.B., Spitzer, K.: The IRMA Reference Database and Its Use for Content-Based Image Retrieval in Medical Applications. In: Ammenwerth, E., Gaus, W., Haux, R., Lovis, C., Pfeiffer, K.P., Tilg, B., Wichmann, H.E. (eds.) (Hrsg): GMDS 2004 - Kooperative Versorgung - Vernetzte Forschung - Ubiquitäre Information, pp. 251–253. Verlag videel OHG, Niebüll (2004)
Lehmann, T.M., Güld, M.O., Thies, C., Fischer, B., Spitzer, K., Keysers, D., Ney, H., Kohnen, M., Schubert, H., Wein, B.B.: Content-based Image Retrieval in Medical Applications. Methods of Information in Medicine 43(4), 354–361 (2004)
Cohen, A.: Ondelettes, analyses multirésolution et traitement numérique du signal. Ph.D. thesis, University of Paris IX, Dauphine (1992)
Daubechies, I.: Ten lectures on wavelets, SIAM (1992)
Mallinckrodt Institute of Radiology (MIR), ftp://wuerlim.wustl.edu/pub/dicom/images/version3/
Philips: ftp://ftp-wjq.philips.com/medical/interoperability/out/Medical_Images/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Park, J., Kang, G., Pan, S., Kim, P. (2006). A Novel Algorithm for Identification of Body Parts in Medical Images. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2006. Lecture Notes in Computer Science(), vol 4223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881599_143
Download citation
DOI: https://doi.org/10.1007/11881599_143
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45916-3
Online ISBN: 978-3-540-45917-0
eBook Packages: Computer ScienceComputer Science (R0)