Skip to main content

Feedbacks and Oscillations in the Virtual Cell VICE

  • Conference paper
Computational Methods in Systems Biology (CMSB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4210))

Included in the following conference series:

Abstract

We analyse an enhanced specification of VICE, a hypothetical prokaryote with a genome as basic as possible. Besides the most common metabolic pathways of prokaryotes in interphase, VICE also posseses a regulatory feedback circuit based on the enzyme phosphofructokinase. We use as formal description language a fragment of the stochastic π-calculus. Simulations are run on BEAST, an abstract machine specially tailored to run in silico experimentations. Two kinds of virtual experiments have been carried out, depending on the way nutrients are supplied to VICE. The result of our experimentations in silico confirm that our virtual cell “survives” in an optimal environment, as it exhibits the homeostatic property similary to real living cells. Additionally, oscillatory patterns in the concentration of fructose-6-phosphate and fructose-1,6-bisphosphate show up, similar to the real ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almaas, E., Kowács, B., et al.: Global organization of metabolic fluxes in the bacterium. Escherichia Coli. Nature 427, 839–843 (2004)

    Google Scholar 

  2. Buchholz, A., Takors, R., Wandrey, C.: Quantification of intracellular metabolites in escherichia coli k12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Analytical Biochemistry 295, 129–137 (2001)

    Article  Google Scholar 

  3. Cao, Y., Li, H., Petzold, L.: Efficient formulation of the stochastic simulation algorithm for chemically reacting system. Journal of Chemical Physics 121, 4059–4067 (2004)

    Article  Google Scholar 

  4. Cardelli, L., Phillips, A.: A correct abstract machine for stochastic pi-calculus. In: Procs. BioConcur (2004)

    Google Scholar 

  5. Chiarugi, D., Curti, M., Degano, P., Marangoni, R.: ViCe: a VIrtual CEll. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 207–220. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Curti, M., Degano, P., Priami, C., Baldari, C.T.: Modelling biochemical pathways through enhanced π-calculus. Theoretical Computer Science (to appear, 2004)

    Google Scholar 

  7. Degano, P., Priami, C.: Enhanced operational semantics. ACM Computing Surveys 28(2), 352–354 (1996)

    Article  Google Scholar 

  8. Demin, O.V., Kholodenko, B.N., Westerhoff, H.V.: Control analysis of stationary forced oscillations. Journal of Physical Chemistry 103, 10696–10710 (1999)

    Google Scholar 

  9. Diaz Ricci, J.C.: Adp modulates the dynamic behavior of the glycolytic pathway of escherichia coli. Biochemical and Biophysical Research Communications 271, 244–249 (2000)

    Article  Google Scholar 

  10. Edwards, J., Ibarra, R., Palsson, B.: In silico prediction of escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotechnology 19, 125–130 (2001)

    Article  Google Scholar 

  11. Masaru, T., et al.: E–CELL: software environment for whole–cell simulation. Bioinformatics 15, 72–84 (1998)

    Google Scholar 

  12. Fong, S., Marciniak, J., Palsson, B.: Description and interpretation on adaptive evolution of escherichia coli k-12 mg1655 by using a genome-scale in silico metabolic model. Journal of Bacteriology 185, 6400–6408 (2003)

    Article  Google Scholar 

  13. Gibson, M., Bruck, J.: Efficient exact stochastic simulation of hcemical systems with many species and many channels. Journal of Physical Chemistry 104, 1876–1889 (2005)

    Google Scholar 

  14. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  15. Hammes, G.G., Shimmel, P.R.: The Enzymes. In: Boyer, P.D. (ed.), vol. 2. Academic Press, New York (1970)

    Google Scholar 

  16. Heinrich, R., Schuster, S.: The regulation of cellular systems. Chapman and Hall, Boca Raton (1996)

    MATH  Google Scholar 

  17. Higgins, J.: A chemical mechanism for oscillation of glycolytic intermediates in yeast cell. Proceeding of National Academy Science USA 51, 989–994 (1964)

    Article  Google Scholar 

  18. Kholodenko, B.N., Hoek, J.B., Westerhoff, H.V., Brown, G.C.: Quantification of information tranfer via cellular transduction pathways. FEBS letters 414, 430–434 (1997)

    Article  Google Scholar 

  19. Kitano, H.: Foundations of System Biology. MIT Press, Cambridge (2002)

    Google Scholar 

  20. Koonin, E.V.: How many genes can make a cell:the minimal-gene-set concept. Annual Review Genomics and Human Genetics 01, 99–116 (2000)

    Article  Google Scholar 

  21. Loew, L.M., Schaff, J.C.: The virtual cell: a software environment for computational cell biology. Trends Biotechnology 19(10), 401–406 (2001)

    Article  Google Scholar 

  22. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Univ. Press, Cambridge (1999)

    Google Scholar 

  23. Mushegian, A.R., Koonin, E.V.: A minimal gene set fir cellular life derived by comparison of complete bacterial genome. Proceedings of National Academy of Science USA 93, 10268–10273 (1996)

    Article  Google Scholar 

  24. Petzold, L., Li, H.: Logarithmic direct method for discrete stochastic simulation of chemically reacting systems (2006), http://www.engineering.ucsb.edu/cse/Files/ldm0513.pdf

  25. Priami, C.: Stochastic π-calculus. The Computer Journal 38(6), 578–589 (1995)

    Article  Google Scholar 

  26. Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic passing-name calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Reed, J., Palsson, B.: Thirteen years of building contraint-based in silico models of escherichia coli. Journal of Bacteriology 185, 2692–2699 (2003)

    Article  Google Scholar 

  28. Regev, A., Shapiro, E.: Cells as computations. Nature 419, 343 (2002)

    Article  Google Scholar 

  29. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Pacific Symposium of Biocomputing (PSB 2001), pp. 459–470 (2001)

    Google Scholar 

  30. Schuster, S., Kahn, D., Westerhoff, H.V.: Modular analysis of the control of complex metabolic pathways. Biophysical Chemistry 48, 1–17 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chiarugi, D., Chinellato, M., Degano, P., Brutto, G.L., Marangoni, R. (2006). Feedbacks and Oscillations in the Virtual Cell VICE. In: Priami, C. (eds) Computational Methods in Systems Biology. CMSB 2006. Lecture Notes in Computer Science(), vol 4210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11885191_7

Download citation

  • DOI: https://doi.org/10.1007/11885191_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46166-1

  • Online ISBN: 978-3-540-46167-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics