Skip to main content

Self-aware and Learning Structure

  • Conference paper
Intelligent Computing in Engineering and Architecture (EG-ICE 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4200))

Abstract

This study focuses on learning of control commands identification and load identification for active shape control of a tensegrity structure in situations of unknown loading event. Control commands are defined as sequences of contractions and elongations of active struts. Case-based reasoning strategies support learning. Simple retrieval and adaptation functions are proposed. They are derived from experimental results of load identification studies. The proposed algorithm leads to two types of learning: reduction of command identification time and increase of command quality over time. In the event of no retrieved case, load identification is performed. This methodology is based on measuring the response of the structure to current load and inferring the cause. It provides information in order to identify control commands through multi-objective search. Results are validated through experimental testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kawaguchi, K., Pellegrino, S., Furuya, H.: Shape and Stress Control Analysis of Prestressed Truss Structures. Journal of Reinforced Plastics and Composites 15, 1226–1236 (1996)

    Google Scholar 

  2. Djouadi, S., Motro, R., Pons, J.C., Crosnier, B.: Active Control of Tensegrity Systems. Journal of Aerospace Engineering 11, 37–44 (1998)

    Article  Google Scholar 

  3. Sultan, C.: Modeling, design and control of tensegrity structures with applications, PhD thesis, Purdue Univ., West Lafayette, Ind. (1999)

    Google Scholar 

  4. Skelton, R.E., Helton, J.W., Adhikari, R., Pinaud, J.P., Chan, W.: An introduction to the mechanics of tensegrity structures. In: Handbook on mechanical systems design. CRC, Boca Raton (2000)

    Google Scholar 

  5. Kanchanasaratool, N., Williamson, D.: Modelling and control of class NSP tensegrity structures. International Journal of Control 75(2), 123–139 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Van de Wijdeven, J., de Jager, B.: Shape Change of Tensegrity Structures: Design and Control. In: Proceedings of the American Control Conference, Protland, OR, USA, pp. 2522–2527 (2005)

    Google Scholar 

  7. Fest, E., Shea, K., Smith, I.F.C.: Active Tensegrity Structure. Journal of Structural Engineering 130(10), 1454–1465 (2004)

    Article  Google Scholar 

  8. Domer, B., Smith, I.F.C.: An Active Structure that learns. Journal of Computing in Civil Engineering 19(1), 16–24 (2005)

    Article  Google Scholar 

  9. Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann Publishers Inc., San Mateo (1993)

    Google Scholar 

  10. Leake, D.B.: Case-based reasoning: Experiences, lessons, & future directions. In: Leake, D.B. (ed.). California Press, Menlo Park (1996)

    Google Scholar 

  11. Leake, D.B., Wilson, D.C.: When Experience is Wrong: Examining CBR for changing Tasks and Environments. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, p. 218. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Müller, K.R., Mika, S., Rätsch, G.K.T., Shölkopf, B.: An Introduction to Kernel-Based Learning Algorithms. IEEE Transactions on Neural Networks 12(2), 181–201 (2001)

    Article  Google Scholar 

  13. Purvis, L., Pu, P.: Adaptation Using Constraint Satisfaction Techniques. In: ICCBR 1995. LNCS (LNAI), vol. 1010, pp. 289–300. Springer, Sesimbra (1995)

    Google Scholar 

  14. Marling, C., Sqalli, M., Rissland, E., Munoz-Avila, H., Aha, D.: Case-Based Reasoning Integrations. AAAI, Menlo Park (Spring 2002)

    Google Scholar 

  15. Waheed, A., Adeli, H.: Case-based reasoning in steel bridge engineering. Knowledge-Based Systems 18, 37–46 (2005)

    Article  Google Scholar 

  16. Bailey, S., Smith, I.F.C.: Case-based preliminary building design. Journal of Computing in Civil Engineering, ASCE 8(4), 454–468 (1994)

    Article  Google Scholar 

  17. Ljung, L.: System identification-theory for the users. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  18. Park, G., Rutherford, A.C., Sohn, H., Farrar, C.R.: An outlier analysis framework impedance-based structural health monitoring. Journal of Sound and Vibration 286, 229–250 (2005)

    Article  Google Scholar 

  19. Vanlanduit, S., Guillaume, P., Cauberghe, B., Parloo, E., De Sitter, G., Verboven, P.: On-line identification of operational loads using exogenous inputs. Journal of Sound and Vibration 285, 267–279 (2005)

    Article  Google Scholar 

  20. Haralampidis, Y., Papadimitriou, C., Pavlidou, M.: Multi-objective framework for structural model identification. Earthquake Engineering and Structural Dynamics 34, 665–685 (2005)

    Article  Google Scholar 

  21. Maeck, J., De Roeck, G.: Damage assessment using vibration analysis on the z24-bridge. Mechanical Systems and Signal Processing 17, 133–142 (2003)

    Article  Google Scholar 

  22. Lagomarsino, S., Calderini, C.: The dynamical identification of the tensile force in ancient tie-rods. Engineering Structures 27, 846–856 (2005)

    Article  Google Scholar 

  23. Robert-Nicoud, Y., Raphael, B., Smith, I.F.C.: System Identification through Model Composition and Stochastic Search. Journal of Computing in Civil Engineering 19(3), 239–247 (2005)

    Article  Google Scholar 

  24. Adam, B., Smith, I.F.C.: Self Diagnosis and Self Repair of an Active Tensegrity Structure. Journal of Structural Engineering (in review)

    Google Scholar 

  25. Adam, B., Smith, I.F.C.: Tensegrity Active Control: a Multi-Objective Approach. Journal of Computing in Civil Engineering (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adam, B., Smith, I.F.C. (2006). Self-aware and Learning Structure. In: Smith, I.F.C. (eds) Intelligent Computing in Engineering and Architecture. EG-ICE 2006. Lecture Notes in Computer Science(), vol 4200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11888598_2

Download citation

  • DOI: https://doi.org/10.1007/11888598_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46246-0

  • Online ISBN: 978-3-540-46247-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics