Skip to main content

Formalizing Construction Knowledge for Concurrent Performance-Based Design

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4200))

Abstract

The capability to represent design solutions with product models has increased significantly in recent years. Correspondingly the formalization of design methods has progressed for several traditional design disciplines, making the multi-disciplinary design process increasingly performance and computer-based. A similar formalization of construction concepts is needed so that construction professionals can participate as a discipline contributing to the model-based design of a facility and its development processes and organization. This paper presents research that aims at formalizing construction concepts to make them self-aware in the context of virtual computer models of facilities and their construction schedules and organizations. It also describes a research method that has been developed at the Center for Integrated Facility Engineering at Stanford University to address the challenge of carrying out scientifically sound research in a project-based industry like construction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hänninen, R.: Building Lifecycle Performance Management and Integrated Design Processes: How to Benefit from Building Information Models and Interoperability in Performance Management. Invited Presentation Watson Seminar Series Stanford Univ. (2006)

    Google Scholar 

  2. Eastman, C.: General Purpose Building Description Systems. Computer Aided Design 8(1), 17–26 (1976)

    Article  Google Scholar 

  3. Bjork, B.C.: Basic structure of a proposed building product model. Computer Aided Design 21(2), 71–78 (1989)

    Article  Google Scholar 

  4. Eastman, C.M., Siabiris, A.: Generic building product model incorporating building type information. Automation in Construction 3(4), 283–304 (1995)

    Article  Google Scholar 

  5. Karola, A., Lahtela, H., Hänninen, R., Hitchcock, R., Chen, Q.Y., Dajka, S., Hagstrom, K.: BSPro COM-Server - Interoperability between software tools using industrial foundation classes. Energy and Buildings 34(9), 901–907 (2002)

    Article  Google Scholar 

  6. Lee, K., Chin, S., Kim, J.: A core system for design information management using industry foundation classes. Computer-Aided Civil and Infrastructure Eng. 18(4), 286–298 (2003)

    Article  Google Scholar 

  7. Eastman, C., Wang, F., You, S.J., Yang, D.: Deployment of an AEC industry sector product model. Computer Aided Design 37(12), 1214–1228 (2005)

    Article  Google Scholar 

  8. Rivard, H., Bedard, C., Ha, K.H., Fazio, P.: Shared conceptual model for the building envelope design process. Bldg. & Env. 34(2), 175–187 (1999)

    Article  Google Scholar 

  9. O’Sullivan, D.T.J., Keane, M.M., Kelliher, D., Hitchcock, R.J.: Improving building operation by tracking performance metrics throughout the building lifecycle (BLC). Energy and Buildings 36(11), 1075–1090 (2004)

    Article  Google Scholar 

  10. Shea, K., Aish, R., Gourtovaia, M.: Towards integrated performance-driven generative design tools. Automation in Construction 14(2), 253–264 (2005)

    Article  Google Scholar 

  11. Mora, R., Rivard, H., Bedard, C.: Computer representation to support conceptual structural design within a building architectural context. J. Comput. Civ. Eng. 20(2), 76–87 (2006)

    Article  Google Scholar 

  12. Howard, H.C., Levitt, R.E., Paulson, B.C., Pohl, J.G., Tatum, C.B.: Computer integration: Reducing fragmentation in AEC industry. J. Comput. Civ. Eng. 3(1), 18–32 (1989)

    Article  Google Scholar 

  13. Rivard, H., Fenves, S.J.: Representation for conceptual design of buildings. J. Comput. Civ. Eng. 14(3), 151–159 (2000)

    Article  Google Scholar 

  14. Hegazy, T., Zaneldin, E., Grierson, D.: Improving design coordination for building projects. I: Information model. J. Constr. Eng. & Mgt. 127(4), 322–329 (2001)

    Article  Google Scholar 

  15. Gero, J.S., Louis, S.J.: Improving Pareto optimal designs using genetic algorithms. Microcomputers in Civ. Eng. 10(4), 239–247 (1995)

    Google Scholar 

  16. Turk, Z.: Phenomenologial foundations of conceptual product modelling in architecture, engineering and construction. AI in Eng. 15(2), 83–92 (2001)

    Google Scholar 

  17. Kam, C., Fischer, M., Hänninen, R., Karjalainen, A., Laitinen, J.: The product model and Fourth Dimension project. ITCon 8, 137–166 (2003)

    Google Scholar 

  18. Demian, P., Fruchter, R.: Measuring relevance in support of design reuse from archives of building product models. J. Comput. Civ. Eng. 19(2), 119–136 (2005)

    Article  Google Scholar 

  19. Russell, J.S., Gugel, J.G., Radtke, M.W.: Comparative analysis of three constructibility approaches. J. Constr. Eng. & Mgt. 120(1), 180–195 (1994)

    Article  Google Scholar 

  20. O’Connor, J.T.: Impacts of Constructibility Improvement. J. Constr. Eng. & Mgt. 111(4), 404–410 (1985)

    Article  Google Scholar 

  21. Tatum, C.B.: Improving Constructibility During Conceptual Planning. J. Constr. Eng. & Mgt. 113(2), 191–207 (1987)

    Article  Google Scholar 

  22. Boeke Jr., E.H.: Design for constructibility. A contractor’s view Concrete Constr. 35(2), 3 p. (1990)

    Google Scholar 

  23. Constructibility and constructibility programs. White paper: J. Constr. Eng. & Mgt. 117(1), 67–89 (1991)

    Google Scholar 

  24. O’Connor, J.T., Miller, S.J.: Constructibility Programs: Method for Assessment and Benchmarking. J. Performance of Constructed Facilities 8(1), 46–64 (1994)

    Article  Google Scholar 

  25. Glavinich, T.E.: Improving constructibility during design phase. J. Arch. Eng. 1(2), 73–76 (1995)

    Article  Google Scholar 

  26. Fisher, D.J., Anderson, S.D., Rahman, S.P.: Integrating constructibility tools into constructibility review process. J. Constr. Eng. & Mgt. 126(2), 89–96 (2000)

    Article  Google Scholar 

  27. Pocock, J.B., Kuennen, S.T., Gambatese, J., Rauschkolb, J.: Constructibility state of practice report. J. Constr. Eng. & Mgt. 132(4), 373–383 (2006)

    Article  Google Scholar 

  28. Fischer, M., Tatum, C.B.: Characteristics of Design-Relevant Constructibility Knowledge. J. Constr. Eng. & Mgt. 123(3), 253–260 (1997)

    Article  Google Scholar 

  29. Pulaski, M.H., Horman, M.J.: Organizing constructibility knowledge for design. J. Constr. Eng. & Mgt. 131(8), 911–919 (2005)

    Article  Google Scholar 

  30. Paulson, B.C.: Interactive Graphics for Simulating Construction Operations. J. Constr. Div. 104(1), 69–76 (1978)

    Google Scholar 

  31. Cleveland Jr., A.B.: Real-time animation of construction activities. Constr. Congr. I - Excellence in the Constructed Project, 238–243 (1989)

    Google Scholar 

  32. Retik, A., Warszawski, A., Banai, A.: Use of computer graphics as a scheduling tool. Bldg. & Env. 25(2), 133–142 (1990)

    Article  Google Scholar 

  33. Fischer, M., Liston, K., Schwegler, B.R.: Interactive 4D Project Management System. In: 2nd Civ. Eng. Conf. in the Asian Region, pp. 367–372 (2001)

    Google Scholar 

  34. Fischer, M., Haymaker, J., Liston, K.: Benefits of 3D and 4D Models for Facility Managers and AEC Service Providers. In: Issa, R.R.A., Flood, I., O’Brien, W. (eds.) 4D CAD and Visualization in Construction - Developments and Applications, Balkema, pp. 1–32 (2003)

    Google Scholar 

  35. Chau, K.W., Anson, M., Zhang, J.P.: Four-dimensional visualization of construction scheduling and site utilization. J. Constr. Eng. & Mgt. 130(4), 560–598 (2004)

    Article  Google Scholar 

  36. Kamat, V.R., Martinez, J.C.: Comparison of simulation-driven construction operations visualization and 4D CAD. In: Winter Simulation Conf., vol. 2, pp. 1765–1770 (2002)

    Google Scholar 

  37. Haymaker, J., Fischer, M.: 4D Modeling on the Walt Disney Concert Hall. Tec21 38, 7–12 (2001)

    Google Scholar 

  38. Fischer, M.: The Benefits of Virtual Building Tools. Civ. Eng. 73(8), 60–67 (2003)

    Google Scholar 

  39. Liston, K., Fischer, M., Winograd, T.: Focused Sharing of Information for Multidisciplinary Decision Making by Project Teams. ITCon 6, 69–81 (2001)

    Google Scholar 

  40. Khanzode, A., Fischer, M., Reed, D.: Case Study of the Implementation of the Lean Project Delivery System (LPDS) using Virtual Building Technologies on a large Health-care Project. In: 13th Annual Conf. of the Int. Group for Lean Constr., pp. 153–160 (2005)

    Google Scholar 

  41. Rischmoller, L., Alarcon, L.F., Koskela, L.: Improving value generation in the design process of industrial projects using CAVT. J. Mgt. in Eng. 22(2), 52–60 (2006)

    Article  Google Scholar 

  42. Hendrickson, C., Zozaya-Gorostiza, C., Rehak, D., Baracco-Miller, E., Lim, P.: Expert System for Construction Planning. Comput. Civ. Eng. 1(4), 253–269 (1987)

    Article  Google Scholar 

  43. Fisher, D.J., Rajan, N.: Automated constructibility analysis of work-zone traffic-control planning. J. Constr. Eng. & Mgt. 122(1), 36–43 (1996)

    Article  Google Scholar 

  44. Poon, J.: Development of an expert system modelling the construction process. J. Constr. Research 5(1), 125–138 (2004)

    Article  MathSciNet  Google Scholar 

  45. Darwiche, A., Levitt, R., Hayes-Roth, B.: OARPLAN: Generating Project Plans by Reasoning about Objects, Actions and Resources. AI EDAM 2(3), 169–181 (1988)

    Google Scholar 

  46. Cherneff, J., Logcher, R., Sriram, D.: Integrating CAD with construction-schedule generation. J. Comput. Civ. Eng. 5(1), 64–84 (1991)

    Article  Google Scholar 

  47. Fischer, M.A.: Automating Constructibility Reasoning with a Geometrical and Topological Project Model. Comput. Syst. in Eng. 4(2-3), 179–192 (1993)

    Article  Google Scholar 

  48. Chevallier, N., Russell, A.D.: Automated schedule generation. Canad. J. Civ. Eng. 25(6), 1059–1077 (1998)

    Article  Google Scholar 

  49. Nakasuka, S., Yoshida, T.: Dynamic scheduling system utilizing machine learning as a knowledge acquisition tool. Int. J. of Production Research 30(2), 411–431 (1992)

    Article  MATH  Google Scholar 

  50. Skibniewski, M., Arciszewski, T., Lueprasert, K.: Constructibility analysis: Machine learning approach. J. Comput. Civ. Eng. 2(1), 8–16 (1997)

    Article  Google Scholar 

  51. Brilakis, I., Soibelman, L., Shinagawa, Y.: Material-based construction site image retrieval. J. Comput. Civ. Eng. 19(4), 341–355 (2005)

    Article  Google Scholar 

  52. Schmitt, G., Engeli, M., Kurmann, D., Faltings, B., Monier, S.: Multi-agent interaction in a complex virtual design environment. AI Communications 9(2), 74–78 (1996)

    Google Scholar 

  53. Schnellenbach-Held, M., Geibig, O.: Intelligent agents in civil engineering. In: Int. Conf. on Comput. Civ. Eng., pp. 989–998 (2005)

    Google Scholar 

  54. Ito, K.: Utilization of 3-D graphical simulation with object-oriented product model for building construction process. Congr. on Comput. Civ. Eng., 73–78 (1988)

    Google Scholar 

  55. Froese, T.M., Paulson Jr., B.C.: Integrating project management systems through shared object-oriented project models. In: Int. Conf. on Applications of AI in Eng., pp. 69–85 (1992)

    Google Scholar 

  56. Froese, T.: Models of construction process information. J. Comput. Civ. Eng. 10(3), 183–193 (1996)

    Article  Google Scholar 

  57. Stuurstraat, N., Tolman, F.: Product modeling approach to building knowledge integration. Automation in Construction 8(3), 269–275 (1999)

    Article  Google Scholar 

  58. Halfawy, M., Froese, T.: Building integrated architecture/engineering/construction systems using smart objects: Methodology and implementation. J. Comput. Civ. Eng. 19(2), 172–181 (2005)

    Article  Google Scholar 

  59. Shen, Z., Issa, R.A., O’Brien, W., Flood, I.: A trade construction knowledge module to enable use of design component data in project management. In: Int. Conf. on Comput. Civ. Eng., pp. 1595–1604 (2005)

    Google Scholar 

  60. Lee, S.H., Pena-Mora, F., Park, M.: Dynamic planning and control methodology for strategic and operational construction project management. Automation in Construction 15(1), 84–97 (2006)

    Article  Google Scholar 

  61. Ugwu, O.O., Anumba, C.J., Thorpe, A.: Ontological foundations for agent support in constructibility assessment of steel structures - A case study. Automation in Construction 14(1), 99–114 (2005)

    Article  Google Scholar 

  62. Udaipurwala, A.H., Russell, A.D.: Hierarchical clustering for interpretation of spatial configuration. Constr. Research Congr. - Broadening Perspectives, 1137–1147 (2005)

    Google Scholar 

  63. Anumba, C.J., Baldwin, A.N., Bouchlaghem, D., Prasad, B., Cutting-Decelle, A.F., Dufau, J., Mommessin, M.: Integrating concurrent engineering concepts in a steelwork construction project. Conc. Eng. Research & Applications 8(3), 199–212 (2000)

    Google Scholar 

  64. Navon, R., Shapira, A., Shechori, Y.: Automated rebar constructibility diagnosis. J. Constr. Eng. & Mgt. 126(5), 389–397 (2000)

    Article  Google Scholar 

  65. Milberg, C., Tommelein, I.: Role of Tolerances and Process Capability Data In Product and Process Design Integration. Construction Research Congr. - Winds of Change: Integration and Innovation in Construction, pp. 795–802 (2003)

    Google Scholar 

  66. Clayton, M.J., Kunz, J.C., Fischer, M.A.: Rapid Conceptual Design Evaluation Using a Virtual Product Model. Eng. Applications of AI 9(4), 439–451 (1996)

    Google Scholar 

  67. Clayton, M.J., Teicholz, P., Fischer, M., Kunz, J.: Virtual components consisting of form, function, and behavior. Automation in Construction 8, 351–367 (1999)

    Article  Google Scholar 

  68. O’Brien, W.J.: Capacity Costing Approaches for Construction Supply-Chain Management. Ph.D. Thesis, Stanford Univ. (1998)

    Google Scholar 

  69. Fischer, M.A., Aalami, F.: Scheduling with Computer-Interpretable Construction Method Models. J. Constr. Eng. & Mgt. 122(4), 337–347 (1996)

    Article  Google Scholar 

  70. Luiten, G.T., Tolman, F., Fischer, M.A.: Project-modelling in AEC to integrate design and construction. Computers in Industry 35(1), 13–29 (1998)

    Article  Google Scholar 

  71. Akinci, B., Fischer, M., Kunz, J.: Automated Generation of Work Spaces Required by Construction Activities. J. Constr. Eng. & Mgt. 128(4), 306–315 (2002)

    Article  Google Scholar 

  72. Staub-French, S., Fischer, M., Kunz, J., Paulson, B.: A generic feature-driven activity-based cost estimation process. Advanced Eng. Informatics 17(1), 23–39 (2003)

    Article  Google Scholar 

  73. Akbas, R.: Geometry Based Modeling and Simulation of Construction Processes. Ph.D. Thesis, Stanford Univ. (2003)

    Google Scholar 

  74. Koo, B.: Formalizing Construction Sequencing Constraints for the Rapid Generation of Scheduling Alternatives. Ph.D. Thesis, Stanford Univ. (2003)

    Google Scholar 

  75. Haymaker, J., Kunz, J., Suter, B., Fischer, M.: Perspectors: composable, reusable reasoning modules to construct an engineering view from other engineering views. Advanced Eng. Informatics 18(1), 49–67 (2004)

    Article  Google Scholar 

  76. Kiviniemi, A.: Product Model Based Requirements Management. Ph.D. Thesis, Stanford Univ. (2005)

    Google Scholar 

  77. Kam, C.: Dynamic Decision Breakdown Structure: Ontology, Methodology, and Frame-work For Information Management In Support Of Decision-Enabling Tasks in the Building Industry. Ph.D. Thesis, Stanford Univ. (2005)

    Google Scholar 

  78. Reinhardt, J., Akinci, B., Garrett, J.H.: Navigational models for computer supported project Management tasks on construction sites. J. Comput. Civ. Eng. 18(4), 281–290 (2004)

    Article  Google Scholar 

  79. Hammad, A., Garrett Jr., J.H., Karimi, H.A.: Mobile Infrastructure Management Support System Considering Location and Task Awareness. In: Towards a Vision for Information Technology in Civ. Eng. Conf., pp. 157–166 (2003)

    Google Scholar 

  80. Christiansen, T.: Modeling Efficiency and Effectiveness of Coordination in Engineering Design Teams. Ph.D. Thesis, Stanford Univ. (1993)

    Google Scholar 

  81. Clayton, J., Fischer, M., Teicholz, P., Kunz, J.: The Charrette Testing Method for CAD Research. In: Hershberger, R., Kihl, M. (eds.) Applied Research in Architecture and Planning, vol. 2, pp. 83–91 (1996)

    Google Scholar 

  82. Kunz, J.: Concurrent Knowledge Systems Engineering. Working Paper 5, CIFE, Stanford Univ. (1989)

    Google Scholar 

  83. Yin, R.: Applications of Case Study Research, 2nd edn. Sage Publications, Thousand Oaks (1994)

    Google Scholar 

  84. Hampson, K.: Technology Strategy and Competitive Performance: A Study of Bridge Construction. Ph.D. Thesis, Stanford Univ. (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, M. (2006). Formalizing Construction Knowledge for Concurrent Performance-Based Design. In: Smith, I.F.C. (eds) Intelligent Computing in Engineering and Architecture. EG-ICE 2006. Lecture Notes in Computer Science(), vol 4200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11888598_20

Download citation

  • DOI: https://doi.org/10.1007/11888598_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46246-0

  • Online ISBN: 978-3-540-46247-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics