Abstract
The capability to represent design solutions with product models has increased significantly in recent years. Correspondingly the formalization of design methods has progressed for several traditional design disciplines, making the multi-disciplinary design process increasingly performance and computer-based. A similar formalization of construction concepts is needed so that construction professionals can participate as a discipline contributing to the model-based design of a facility and its development processes and organization. This paper presents research that aims at formalizing construction concepts to make them self-aware in the context of virtual computer models of facilities and their construction schedules and organizations. It also describes a research method that has been developed at the Center for Integrated Facility Engineering at Stanford University to address the challenge of carrying out scientifically sound research in a project-based industry like construction.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hänninen, R.: Building Lifecycle Performance Management and Integrated Design Processes: How to Benefit from Building Information Models and Interoperability in Performance Management. Invited Presentation Watson Seminar Series Stanford Univ. (2006)
Eastman, C.: General Purpose Building Description Systems. Computer Aided Design 8(1), 17–26 (1976)
Bjork, B.C.: Basic structure of a proposed building product model. Computer Aided Design 21(2), 71–78 (1989)
Eastman, C.M., Siabiris, A.: Generic building product model incorporating building type information. Automation in Construction 3(4), 283–304 (1995)
Karola, A., Lahtela, H., Hänninen, R., Hitchcock, R., Chen, Q.Y., Dajka, S., Hagstrom, K.: BSPro COM-Server - Interoperability between software tools using industrial foundation classes. Energy and Buildings 34(9), 901–907 (2002)
Lee, K., Chin, S., Kim, J.: A core system for design information management using industry foundation classes. Computer-Aided Civil and Infrastructure Eng. 18(4), 286–298 (2003)
Eastman, C., Wang, F., You, S.J., Yang, D.: Deployment of an AEC industry sector product model. Computer Aided Design 37(12), 1214–1228 (2005)
Rivard, H., Bedard, C., Ha, K.H., Fazio, P.: Shared conceptual model for the building envelope design process. Bldg. & Env. 34(2), 175–187 (1999)
O’Sullivan, D.T.J., Keane, M.M., Kelliher, D., Hitchcock, R.J.: Improving building operation by tracking performance metrics throughout the building lifecycle (BLC). Energy and Buildings 36(11), 1075–1090 (2004)
Shea, K., Aish, R., Gourtovaia, M.: Towards integrated performance-driven generative design tools. Automation in Construction 14(2), 253–264 (2005)
Mora, R., Rivard, H., Bedard, C.: Computer representation to support conceptual structural design within a building architectural context. J. Comput. Civ. Eng. 20(2), 76–87 (2006)
Howard, H.C., Levitt, R.E., Paulson, B.C., Pohl, J.G., Tatum, C.B.: Computer integration: Reducing fragmentation in AEC industry. J. Comput. Civ. Eng. 3(1), 18–32 (1989)
Rivard, H., Fenves, S.J.: Representation for conceptual design of buildings. J. Comput. Civ. Eng. 14(3), 151–159 (2000)
Hegazy, T., Zaneldin, E., Grierson, D.: Improving design coordination for building projects. I: Information model. J. Constr. Eng. & Mgt. 127(4), 322–329 (2001)
Gero, J.S., Louis, S.J.: Improving Pareto optimal designs using genetic algorithms. Microcomputers in Civ. Eng. 10(4), 239–247 (1995)
Turk, Z.: Phenomenologial foundations of conceptual product modelling in architecture, engineering and construction. AI in Eng. 15(2), 83–92 (2001)
Kam, C., Fischer, M., Hänninen, R., Karjalainen, A., Laitinen, J.: The product model and Fourth Dimension project. ITCon 8, 137–166 (2003)
Demian, P., Fruchter, R.: Measuring relevance in support of design reuse from archives of building product models. J. Comput. Civ. Eng. 19(2), 119–136 (2005)
Russell, J.S., Gugel, J.G., Radtke, M.W.: Comparative analysis of three constructibility approaches. J. Constr. Eng. & Mgt. 120(1), 180–195 (1994)
O’Connor, J.T.: Impacts of Constructibility Improvement. J. Constr. Eng. & Mgt. 111(4), 404–410 (1985)
Tatum, C.B.: Improving Constructibility During Conceptual Planning. J. Constr. Eng. & Mgt. 113(2), 191–207 (1987)
Boeke Jr., E.H.: Design for constructibility. A contractor’s view Concrete Constr. 35(2), 3 p. (1990)
Constructibility and constructibility programs. White paper: J. Constr. Eng. & Mgt. 117(1), 67–89 (1991)
O’Connor, J.T., Miller, S.J.: Constructibility Programs: Method for Assessment and Benchmarking. J. Performance of Constructed Facilities 8(1), 46–64 (1994)
Glavinich, T.E.: Improving constructibility during design phase. J. Arch. Eng. 1(2), 73–76 (1995)
Fisher, D.J., Anderson, S.D., Rahman, S.P.: Integrating constructibility tools into constructibility review process. J. Constr. Eng. & Mgt. 126(2), 89–96 (2000)
Pocock, J.B., Kuennen, S.T., Gambatese, J., Rauschkolb, J.: Constructibility state of practice report. J. Constr. Eng. & Mgt. 132(4), 373–383 (2006)
Fischer, M., Tatum, C.B.: Characteristics of Design-Relevant Constructibility Knowledge. J. Constr. Eng. & Mgt. 123(3), 253–260 (1997)
Pulaski, M.H., Horman, M.J.: Organizing constructibility knowledge for design. J. Constr. Eng. & Mgt. 131(8), 911–919 (2005)
Paulson, B.C.: Interactive Graphics for Simulating Construction Operations. J. Constr. Div. 104(1), 69–76 (1978)
Cleveland Jr., A.B.: Real-time animation of construction activities. Constr. Congr. I - Excellence in the Constructed Project, 238–243 (1989)
Retik, A., Warszawski, A., Banai, A.: Use of computer graphics as a scheduling tool. Bldg. & Env. 25(2), 133–142 (1990)
Fischer, M., Liston, K., Schwegler, B.R.: Interactive 4D Project Management System. In: 2nd Civ. Eng. Conf. in the Asian Region, pp. 367–372 (2001)
Fischer, M., Haymaker, J., Liston, K.: Benefits of 3D and 4D Models for Facility Managers and AEC Service Providers. In: Issa, R.R.A., Flood, I., O’Brien, W. (eds.) 4D CAD and Visualization in Construction - Developments and Applications, Balkema, pp. 1–32 (2003)
Chau, K.W., Anson, M., Zhang, J.P.: Four-dimensional visualization of construction scheduling and site utilization. J. Constr. Eng. & Mgt. 130(4), 560–598 (2004)
Kamat, V.R., Martinez, J.C.: Comparison of simulation-driven construction operations visualization and 4D CAD. In: Winter Simulation Conf., vol. 2, pp. 1765–1770 (2002)
Haymaker, J., Fischer, M.: 4D Modeling on the Walt Disney Concert Hall. Tec21 38, 7–12 (2001)
Fischer, M.: The Benefits of Virtual Building Tools. Civ. Eng. 73(8), 60–67 (2003)
Liston, K., Fischer, M., Winograd, T.: Focused Sharing of Information for Multidisciplinary Decision Making by Project Teams. ITCon 6, 69–81 (2001)
Khanzode, A., Fischer, M., Reed, D.: Case Study of the Implementation of the Lean Project Delivery System (LPDS) using Virtual Building Technologies on a large Health-care Project. In: 13th Annual Conf. of the Int. Group for Lean Constr., pp. 153–160 (2005)
Rischmoller, L., Alarcon, L.F., Koskela, L.: Improving value generation in the design process of industrial projects using CAVT. J. Mgt. in Eng. 22(2), 52–60 (2006)
Hendrickson, C., Zozaya-Gorostiza, C., Rehak, D., Baracco-Miller, E., Lim, P.: Expert System for Construction Planning. Comput. Civ. Eng. 1(4), 253–269 (1987)
Fisher, D.J., Rajan, N.: Automated constructibility analysis of work-zone traffic-control planning. J. Constr. Eng. & Mgt. 122(1), 36–43 (1996)
Poon, J.: Development of an expert system modelling the construction process. J. Constr. Research 5(1), 125–138 (2004)
Darwiche, A., Levitt, R., Hayes-Roth, B.: OARPLAN: Generating Project Plans by Reasoning about Objects, Actions and Resources. AI EDAM 2(3), 169–181 (1988)
Cherneff, J., Logcher, R., Sriram, D.: Integrating CAD with construction-schedule generation. J. Comput. Civ. Eng. 5(1), 64–84 (1991)
Fischer, M.A.: Automating Constructibility Reasoning with a Geometrical and Topological Project Model. Comput. Syst. in Eng. 4(2-3), 179–192 (1993)
Chevallier, N., Russell, A.D.: Automated schedule generation. Canad. J. Civ. Eng. 25(6), 1059–1077 (1998)
Nakasuka, S., Yoshida, T.: Dynamic scheduling system utilizing machine learning as a knowledge acquisition tool. Int. J. of Production Research 30(2), 411–431 (1992)
Skibniewski, M., Arciszewski, T., Lueprasert, K.: Constructibility analysis: Machine learning approach. J. Comput. Civ. Eng. 2(1), 8–16 (1997)
Brilakis, I., Soibelman, L., Shinagawa, Y.: Material-based construction site image retrieval. J. Comput. Civ. Eng. 19(4), 341–355 (2005)
Schmitt, G., Engeli, M., Kurmann, D., Faltings, B., Monier, S.: Multi-agent interaction in a complex virtual design environment. AI Communications 9(2), 74–78 (1996)
Schnellenbach-Held, M., Geibig, O.: Intelligent agents in civil engineering. In: Int. Conf. on Comput. Civ. Eng., pp. 989–998 (2005)
Ito, K.: Utilization of 3-D graphical simulation with object-oriented product model for building construction process. Congr. on Comput. Civ. Eng., 73–78 (1988)
Froese, T.M., Paulson Jr., B.C.: Integrating project management systems through shared object-oriented project models. In: Int. Conf. on Applications of AI in Eng., pp. 69–85 (1992)
Froese, T.: Models of construction process information. J. Comput. Civ. Eng. 10(3), 183–193 (1996)
Stuurstraat, N., Tolman, F.: Product modeling approach to building knowledge integration. Automation in Construction 8(3), 269–275 (1999)
Halfawy, M., Froese, T.: Building integrated architecture/engineering/construction systems using smart objects: Methodology and implementation. J. Comput. Civ. Eng. 19(2), 172–181 (2005)
Shen, Z., Issa, R.A., O’Brien, W., Flood, I.: A trade construction knowledge module to enable use of design component data in project management. In: Int. Conf. on Comput. Civ. Eng., pp. 1595–1604 (2005)
Lee, S.H., Pena-Mora, F., Park, M.: Dynamic planning and control methodology for strategic and operational construction project management. Automation in Construction 15(1), 84–97 (2006)
Ugwu, O.O., Anumba, C.J., Thorpe, A.: Ontological foundations for agent support in constructibility assessment of steel structures - A case study. Automation in Construction 14(1), 99–114 (2005)
Udaipurwala, A.H., Russell, A.D.: Hierarchical clustering for interpretation of spatial configuration. Constr. Research Congr. - Broadening Perspectives, 1137–1147 (2005)
Anumba, C.J., Baldwin, A.N., Bouchlaghem, D., Prasad, B., Cutting-Decelle, A.F., Dufau, J., Mommessin, M.: Integrating concurrent engineering concepts in a steelwork construction project. Conc. Eng. Research & Applications 8(3), 199–212 (2000)
Navon, R., Shapira, A., Shechori, Y.: Automated rebar constructibility diagnosis. J. Constr. Eng. & Mgt. 126(5), 389–397 (2000)
Milberg, C., Tommelein, I.: Role of Tolerances and Process Capability Data In Product and Process Design Integration. Construction Research Congr. - Winds of Change: Integration and Innovation in Construction, pp. 795–802 (2003)
Clayton, M.J., Kunz, J.C., Fischer, M.A.: Rapid Conceptual Design Evaluation Using a Virtual Product Model. Eng. Applications of AI 9(4), 439–451 (1996)
Clayton, M.J., Teicholz, P., Fischer, M., Kunz, J.: Virtual components consisting of form, function, and behavior. Automation in Construction 8, 351–367 (1999)
O’Brien, W.J.: Capacity Costing Approaches for Construction Supply-Chain Management. Ph.D. Thesis, Stanford Univ. (1998)
Fischer, M.A., Aalami, F.: Scheduling with Computer-Interpretable Construction Method Models. J. Constr. Eng. & Mgt. 122(4), 337–347 (1996)
Luiten, G.T., Tolman, F., Fischer, M.A.: Project-modelling in AEC to integrate design and construction. Computers in Industry 35(1), 13–29 (1998)
Akinci, B., Fischer, M., Kunz, J.: Automated Generation of Work Spaces Required by Construction Activities. J. Constr. Eng. & Mgt. 128(4), 306–315 (2002)
Staub-French, S., Fischer, M., Kunz, J., Paulson, B.: A generic feature-driven activity-based cost estimation process. Advanced Eng. Informatics 17(1), 23–39 (2003)
Akbas, R.: Geometry Based Modeling and Simulation of Construction Processes. Ph.D. Thesis, Stanford Univ. (2003)
Koo, B.: Formalizing Construction Sequencing Constraints for the Rapid Generation of Scheduling Alternatives. Ph.D. Thesis, Stanford Univ. (2003)
Haymaker, J., Kunz, J., Suter, B., Fischer, M.: Perspectors: composable, reusable reasoning modules to construct an engineering view from other engineering views. Advanced Eng. Informatics 18(1), 49–67 (2004)
Kiviniemi, A.: Product Model Based Requirements Management. Ph.D. Thesis, Stanford Univ. (2005)
Kam, C.: Dynamic Decision Breakdown Structure: Ontology, Methodology, and Frame-work For Information Management In Support Of Decision-Enabling Tasks in the Building Industry. Ph.D. Thesis, Stanford Univ. (2005)
Reinhardt, J., Akinci, B., Garrett, J.H.: Navigational models for computer supported project Management tasks on construction sites. J. Comput. Civ. Eng. 18(4), 281–290 (2004)
Hammad, A., Garrett Jr., J.H., Karimi, H.A.: Mobile Infrastructure Management Support System Considering Location and Task Awareness. In: Towards a Vision for Information Technology in Civ. Eng. Conf., pp. 157–166 (2003)
Christiansen, T.: Modeling Efficiency and Effectiveness of Coordination in Engineering Design Teams. Ph.D. Thesis, Stanford Univ. (1993)
Clayton, J., Fischer, M., Teicholz, P., Kunz, J.: The Charrette Testing Method for CAD Research. In: Hershberger, R., Kihl, M. (eds.) Applied Research in Architecture and Planning, vol. 2, pp. 83–91 (1996)
Kunz, J.: Concurrent Knowledge Systems Engineering. Working Paper 5, CIFE, Stanford Univ. (1989)
Yin, R.: Applications of Case Study Research, 2nd edn. Sage Publications, Thousand Oaks (1994)
Hampson, K.: Technology Strategy and Competitive Performance: A Study of Bridge Construction. Ph.D. Thesis, Stanford Univ. (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fischer, M. (2006). Formalizing Construction Knowledge for Concurrent Performance-Based Design. In: Smith, I.F.C. (eds) Intelligent Computing in Engineering and Architecture. EG-ICE 2006. Lecture Notes in Computer Science(), vol 4200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11888598_20
Download citation
DOI: https://doi.org/10.1007/11888598_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46246-0
Online ISBN: 978-3-540-46247-7
eBook Packages: Computer ScienceComputer Science (R0)