Skip to main content

A Model for Data Fusion in Civil Engineering

  • Conference paper
Intelligent Computing in Engineering and Architecture (EG-ICE 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4200))

Abstract

Thoroughly, reliably, accurately and quickly estimating the state of civil engineering systems such as traffic networks, structural systems, and construction projects is becoming increasingly feasible via ubiquitous sensor networks and communication systems. By better and more quickly estimating the state of a system we can make better decisions faster. This has tremendous value and broad impact. A key function in system state estimation is data fusion. A model for data fusion is adapted here for civil engineering systems from existing models. Applications and future research needs are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Caron, R., Song, H., Vanheeghe, D., Caldas: Models For Locating RFID Nodes. In: ICCCBEXI, Montreal, Canada, June 14-16 (2006)

    Google Scholar 

  2. Cheng, Y., Melhem, H.G.: Monitoring bridge health using fuzzy case-based reasoning. Advanced Engineering Informatics 19(4), 299–315 (2005)

    Article  Google Scholar 

  3. Haas, C.: Evolution of an Automated Crack Sealer: A Study in Construction Technology Development. Automation in Construction 4, 293–305 (1996)

    Article  Google Scholar 

  4. Haas, C., Hendrickson, C.: Integration of Diverse Technologies for Pavement Sensing. The NRC’s Transportation Research Record, 1311, 92–102 (1991)

    Google Scholar 

  5. Kim, C., Haas, C., Liapi, K., Caldas, C.: Human-Assisted Obstacle Avoidance System Using 3D Workspace Modeling for Construction Equipment Operation. J. Comp. in Civ. Engrg. 20(3), 177–186 (2006)

    Article  MATH  Google Scholar 

  6. Kim, H., Haas, C.T., Rauch, A., Browne, C.: 3D Image Segmentation of Aggregates from Laser Profiling. Computer-Aided Civil and Infrastructure Engineering 18(4), 254–263 (2003)

    Article  Google Scholar 

  7. Kim, Y.S., Haas, C.: A Model for Automation of Infrastructure Maintenance using Representational Forms. Automation in Construction 10(1), 57–68 (2000)

    Article  Google Scholar 

  8. Kwon, B., Kim, H., Liapi: Fitting Range Data to Primitives for Rapid Local 3D Modeling Using Sparse Range Point Clouds. Automation in Construction 13, 67–81 (2004)

    Article  Google Scholar 

  9. Mahmassani, H.S., Haas, C., Logman, H., Shin, H., Rioux, T.: Integration of Point-Based and Link-Based Data for Incident Detection and Traffic Estimation. Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, research report no. 0-4156-1 (March 2004)

    Google Scholar 

  10. Mahmassani, H., Haas, C., Peterman, J., Zhou, S.: Evaluation of Incident Detection Methodologies. Center for Transportation Research, Univ. of Texas, Report No. 1795-2, Austin TX (October 1999)

    Google Scholar 

  11. McLaughlin, J., Sreenivasan, S.V., Haas, C., Liapi, K.: Rapid Human-Assisted Creation of Bounding Models for Obstacle Avoidance in Construction. Journal of Computer-Aided Civil and Infrastructure Engineering 19, 3–15 (2004)

    Article  Google Scholar 

  12. Robert-Nicoud, Y., Raphael, B., Smith, I.F.C.: System Identification through Model Composition and Stochastic Search. J. of Computing in Civil Engineering 19(3), 239–247 (2005)

    Article  Google Scholar 

  13. Robert-Nicoud, Y., Raphael, B., Smith, I.F.C.: Configuration of measurement systems using Shannon’s entropy function. Computers & Structures 83(8-9), 599–612 (2005)

    Article  Google Scholar 

  14. Saitta, S., Raphael, B., Smith, I.F.C.: Data mining techniques for improving the reliability of system identification. Advanced Engineering Informatics 19(4), 289–298 (2005)

    Article  Google Scholar 

  15. Smith, I.: Sensors, Models and Videotape. In: Soibelman, Peña-Mora (eds.) Proc. 2005 ASCE International Conference on Computing in Civil Engineering, Cancun, Mexico, July 12–15 (2005)

    Google Scholar 

  16. Steinberg, A.N., Bowman, C.L.: Revisions to the JDL Data Fusion Model. In: Hall, D.L., Llinas, J. (eds.) Handbook of Multisensor Data Fusion, p. 1. CRC Press, Boca Raton (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haas, C. (2006). A Model for Data Fusion in Civil Engineering. In: Smith, I.F.C. (eds) Intelligent Computing in Engineering and Architecture. EG-ICE 2006. Lecture Notes in Computer Science(), vol 4200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11888598_29

Download citation

  • DOI: https://doi.org/10.1007/11888598_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46246-0

  • Online ISBN: 978-3-540-46247-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics