Skip to main content

GPS and 3DOF Tracking for Georeferenced Registration of Construction Graphics in Outdoor Augmented Reality

  • Conference paper
Intelligent Computing in Engineering and Architecture (EG-ICE 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4200))

Abstract

This paper describes research that investigated the application of the Global Positioning System (GPS) and 3DOF angular tracking to address the registration problem in visualization of construction graphics in outdoor Augmented Reality (AR) environments. AR is the overlaying of virtual images and computer-generated information over scenes of the real world so that the user’s resulting view is enhanced or augmented beyond the normal experience. One of the basic issues in AR is the registration problem. Objects in the real world and superimposed virtual objects must be properly aligned with respect to each other, or the illusion that the two coexist in augmented space is compromised. In the presented research, the global position and the 3D orientation of the user’s viewpoint (i.e. longitude, latitude, altitude, heading, pitch, and roll) are tracked, and this information is reconciled with the known global position and orientation of superimposed CAD objects. The result is an augmented outdoor environment where superimposed CAD objects stay fixed to their real world locations as the user moves freely on a construction site. The algorithms are implemented in a prototype platform called UM-AR-GPS-ROVER that is capable of interactively placing 3D CAD models at any desired location in an outdoor augmented space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azuma, R.: A Survey of Augmented Reality. Teleoperators and Virtual Environments 6(4), 355–385 (1997)

    Google Scholar 

  2. Barfield, W., Caudell, T. (eds.): Fundamentals of Wearable Computers and Augmented Reality. Lawrence Erlbaum Associates, Mahwah (2001)

    Google Scholar 

  3. Behzadan, A.H., Kamat, V.R.: Visualization of Construction Graphics in Outdoor Augmented Reality. In: Proceedings of the 2005 Winter Simulation Conference, Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ (2005)

    Google Scholar 

  4. Dodson, A.H., Roberts, G.W., Ogundipe, O.: Construction plant control using RTK GPS. In: FIG XXII International Congress, Washington, D.C. (2002)

    Google Scholar 

  5. Rogers, S., Langley, P., Wilson, C.: Mining GPS data to augment road models. In: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, San Diego, CA, pp. 104–113 (1999)

    Google Scholar 

  6. Roberts, G.W., Evans, A., Dodson, A., Denby, B., Cooper, S., Hollands, R.: The use of Augmented Reality, GPS, and INS for subsurface data visualization. In: FIG XXII International Congress, Washington, D.C. (2002)

    Google Scholar 

  7. Vincenty, T.: Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review 176, 88–93 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kamat, V.R., Behzadan, A.H. (2006). GPS and 3DOF Tracking for Georeferenced Registration of Construction Graphics in Outdoor Augmented Reality. In: Smith, I.F.C. (eds) Intelligent Computing in Engineering and Architecture. EG-ICE 2006. Lecture Notes in Computer Science(), vol 4200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11888598_34

Download citation

  • DOI: https://doi.org/10.1007/11888598_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46246-0

  • Online ISBN: 978-3-540-46247-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics