Skip to main content

Mini-bucket Elimination with Bucket Propagation

  • Conference paper
Book cover Principles and Practice of Constraint Programming - CP 2006 (CP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4204))

  • 1237 Accesses

Abstract

Many important combinatorial optimization problems can be expressed as constraint satisfaction problems with soft constraints. When problems are too difficult to be solved exactly, approximation methods become the best option. Mini-bucket Elimination (MBE) is a well known approximation method for combinatorial optimization problems. It has a control parameter z that allow us to trade time and space for accuracy. In practice, it is the space and not the time that limits the execution with high values of z. In this paper we introduce a new propagation phase that MBE should execute at each bucket. The purpose of this propagation is to jointly process as much information as possible. As a consequence, the undesirable lose of accuracy caused by MBE when splitting functions into different mini-buckets is minimized. We demonstrate our approach in scheduling, combinatorial auction and max-clique problems, where the resulting algorithm MBE p gives important percentage increments of the lower bound (typically 50% and up to 1566%) with only doubling the cpu time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Journal of the ACM 50, 107–153 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.: Semiring-based CSPs and valued CSPs: Frameworks, properties and comparison. Constraints 4, 199–240 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Pearl, J.: Probabilistic Inference in Intelligent Systems. In: Pearl, J. (ed.) Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  4. Xu, H., Rutenbar, R.A., Sakallah, K.: sub-sat: A formulation for relaxed boolean satisfiability with applications in rounting. In: Proc. Int. Symp. on Physical Design, CA (2002)

    Google Scholar 

  5. Strickland, D.M., Barnes, E., Sokol, J.S.: Optimal protein structure alignment using maximum cliques. Operations Research 53, 389–402 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Vasquez, M., Hao, J.: A logic-constrained knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite. Journal of Computational Optimization and Applications 20(2) (2001)

    Google Scholar 

  7. Park, J.D.: Using weighted max-sat engines to solve mpe. In: Proc. of the 18th AAAI, Edmonton, Alberta, Canada, pp. 682–687 (2002)

    Google Scholar 

  8. Kask, K., Dechter, R.: A general scheme for automatic generation of search heuristics from specification dependencies. Artificial Intelligence 129, 91–131 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rollon, E., Larrosa, J.: Depth-first mini-bucket elimination. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 563–577. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Cooper, M., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence 154, 199–227 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113, 41–85 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press, London (1972)

    MATH  Google Scholar 

  13. Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc-consistency. Artificial Intelligence 159, 1–26 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cooper, M.: High-order consistency in valued constraint satisfaction. Constraints 10, 283–305 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bensana, E., Lemaitre, M., Verfaillie, G.: Earth observation satellite management. Constraints 4(3), 293–299 (1999)

    Article  MATH  Google Scholar 

  16. Leuton-Brown, Y.S.K., Pearson, M.: Towards a universal test suite for combinatorial auction algorithms. ACM E-Commerce, 66–76 (2000)

    Google Scholar 

  17. Johnson, D.S., Trick, M.: Second dimacs implementation challenge: cliques, coloring and satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. AMS, vol. 26 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rollon, E., Larrosa, J. (2006). Mini-bucket Elimination with Bucket Propagation. In: Benhamou, F. (eds) Principles and Practice of Constraint Programming - CP 2006. CP 2006. Lecture Notes in Computer Science, vol 4204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889205_35

Download citation

  • DOI: https://doi.org/10.1007/11889205_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46267-5

  • Online ISBN: 978-3-540-46268-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics