
Lecture Notes in Computer Science 3167
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ana Cavalcanti
Augusto Sampaio
Jim Woodcock (Eds.)

Refinement Techniques
in Software Engineering

First Pernambuco Summer School
on Software Engineering, PSSE 2004
Recife, Brazil, November 23-December 5, 2004
Revised Lectures

13

Authors

Ana Cavalcanti
University of York
Department of Computer Science
Heslington, York YO10 5DD, UK
E-mail: Ana.Cavalcanti@cs.york.ac.uk

Augusto Sampaio
Federal University of Pernambuco
Centre for Informatics
CEP 50740-540, Recife-PE, Brazil
E-mail: acas@cin.ufpe.br

Jim Woodcock
University of York
Department of Computer Science
Heslington, York YO10 5DD, UK
E-mail: jim@cs.york.ac.uk

Library of Congress Control Number: 2006933059

CR Subject Classification (1998): D.2, D.1, F.3, K.6.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-46253-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-46253-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11889229 06/3142 5 4 3 2 1 0

Preface

The Pernambuco School on Software Engineering (PSSE) 2004 was the first in
a series of events devoted to the study of advanced computer science and to
the promotion of international scientific collaboration. The main theme in 2004
was refinement (or reification). Refinement describes the verifiable relationship
between a specification and its implementation; it also describes the process of
discovering appropriate implementations, given a specification. Thus, in one way
or another, refinement is at the heart of the programming process, and so is the
major daily activity of every professional software engineer. The Summer School
and its proceedings were intended to give a detailed tutorial introduction to the
scientific basis of this activity.

These proceedings record the contributions from the invited lecturers. Each
chapter is the result of a thorough revision of the initial notes provided to the
participants of the school. The revision was inspired by the synergy generated
by the opportunity for the lecturers to present and discuss their work among
themselves, and with the school’s attendees. The editors have tried to produce
a coherent view of the topic by harmonizing these contributions, smoothing out
differences in notation and approach, and providing links between the lectures.
We apologize to the authors for any errors introduced by our extensive editing.

Although the chapters are linked in several ways, each one is sufficiently self-
contained to be read in isolation. Nevertheless, Chap. 1 should be read first by
those interested in an introduction to refinement.

Chapter 1. We begin by setting the scene, introducing ideas and notations that
are taken as general background by the lecturers. We discuss program seman-
tics, using Dijkstra’s language of guarded commands as an illustration. We start
with program assertions—perhaps the most widely used formal method in pro-
gramming (assertions form about 1% of Microsoft Windows code)—and then
continue with predicate transformers. We describe the basic notions of refine-
ment, and discuss a simple refinement algebra. Then we relate this to program
development by formalizing the process of stepwise refinement of specifications
into programs. Finally, we describe a useful mathematical structure: the lat-
tice of specifications ordered by refinement. Each of the following four chapters
uses these ideas to illustrate refinement for a given paradigm: object orientation,
concurrency, probabilistic programs, and real-time and fault-tolerant systems.

Chapter 2. Sampaio and Borba describe refinement in the object-oriented set-
ting, illustrating the ideas using sequential Java, although their work is of general
applicability. Their approach is algebraic: they give laws for reasoning about and
refining object-oriented programs. They discuss soundness with respect to predi-
cate transformer semantics, and demonstrate completeness by showing that their
set of laws is comprehensive enough to be able to reduce any program to a nor-

VI Preface

mal form. Finally, they show how their laws can be used to refactor programs,
in order to adapt their structure while preserving their semantics.

Chapter 3. Davies describes refinement of concurrent and distributed systems
using the notations of CSP. He starts by introducing CSP as a process alge-
bra, with a set of operators and a rich collection of laws for reasoning about
the behavior of processes. The denotational semantics of the language is used
to give a simple notion of refinement between processes: every behavior of an
implementation must be a specified behavior. These ideas are explored through
an example involving protocols and their service specifications.

Chapter 4. McIver and Morgan add probabilistic nondeterminism to Dijkstra’s
guarded command language. They make a corresponding change to the program-
ming logic, replacing weakest preconditions by greatest pre-expectations. These
are generalizations of predicates that can be used to express the probability that
a program achieves a postcondition. They explain how we can extend standard
reasoning concepts like invariants and variants to handle probabilistic programs.
They give a series of examples and two longer case studies.

Chapter 5. Liu and Joseph deal with refinement in real-time and fault-tolerant
systems. They use transition systems as their computational model and
Lamport’s “Temporal Logic of Actions (TLA)” as a specification language in
reasoning about functional correctness, timing properties, fault-tolerance, and
schedulability. Their work is explained through an example of the interface be-
tween a processor and a memory device.

Chapter 6. Cavalcanti and Woodcock introduce “Unifying Theories of Program-
ming” as a uniform foundation for all these paradigms. They give a tutorial in-
troduction to an alphabetized version of Tarksi’s relational calculus. They show
how this leads to a simple denotational semantics of a language of terminating
programs, and show that they form a complete lattice. They extend this work
to Hoare-He designs, a relational model of pre- and postcondition specifications,
exploring the space of designs as a subtheory of relations characterized by cer-
tain healthiness conditions. Then they turn their attention to another relational
subtheory—reactive processes—once again characterized by healthiness condi-
tions. Finally, they show that the reactive image of the design lattice gives a
suitable semantic model for CSP. They end by comparing this semantics with
the model given by Davies in his chapter. After this survey of refinement and its
different theories, the final two chapters are on mechanical or automated support
for refinement.

Chapter 7. Clayton and O’Halloran describe the practice of refinement in in-
dustry. They have designed the “Compliance Notation” for demonstrating the
refinement relation between software and its specification. They have built a tool
to support this demonstration, an essential item for industrial-scale application
of refinement. They describe an extended example of a correctness argument for

Preface VII

programs written in the Spark Ada subset. They present an application involv-
ing the correct implementation of control laws that govern control systems.

Chapter 8. Déharbe presents a very successful approach to verification, whose
high level of automation has made it very attractive to industry. This chapter
presents the main temporal logics used for specification of properties, and the
main structures and algorithms used in tools. Widely used tools like SPIN and
SMV are discussed. The approach is briefly compared with that adopted for
model checking of CSP processes.

We are grateful to the members of the Organizing Committee, who worked
very hard to provide an enjoyable experience for all of us. Without the support
of our sponsors, PSSE 2004 could not have been a reality. Their recognition of
the importance of this event for the Software Engineering community in Latin
America is greatly appreciated. We would also like to thank all the lecturers for
their invaluable technical and scientific contribution, and for their commitment
to the event; the effort of all authors is greatly appreciated. Finally, we are
grateful to all the participants of the school. They are the main focus of the
whole event.

April 2006 Ana Cavalcanti
Augusto Sampaio

Jim Woodcock

Organization

PSSE 2004 was organized by the Centro de Informática, Universidade Federal
de Pernambuco (CIn/UFPE), Brazil, in cooperation with the United Nations
University, International Institute for Software Technology (UNU/IIST), and
the University of York, UK.

Executive Committee

Ana Cavalcanti University of York
Antonio Cerone UNU/IIST
Zhiming Liu UNU/IIST
Augusto Sampaio CIn/UFPE (Managing Director)
Jim Woodcock University of York

Sponsoring Institutions

Formal Methods Europe
Sociedade Brasileira de Computação,Brazil
United Nations University, Macau
Universidade Federal de Pernambuco (CIn/UFPE), Brazil
University of York, UK

Acknowledgements

Paulo Borba and Augusto Sampaio. Several parts of their chapter were ex-
tracted and adapted from their previous joint work with Ana Cavalcanti and
Márcio Cornélio: “Algebraic reasoning for object-oriented programming”, Sci-
ence of Computer Programming, 52:53–100, 2004. They thank their collaborator
David Naumann for many discussions that significantly contributed to the work
they report here, which was partially carried out when the authors were visit-
ing the Stevens Institute of Technology at New Jersey, USA. They also thank
Tiago Massoni and Rohit Gheyi for several important comments on an earlier
version of their chapter, and Leila Silva for discussions concerning the impact
of reference semantics in the proposed laws for their language. They are par-
tially supported by the Brazilian Research Agency, CNPq, grants 521994/96–
9 (Paulo Borba), 521039/95–9 (Augusto Sampaio), and 680032/99-1 (DARE
CO-OP project, jointly funded by CNPq PROTEM-CC and the National Science
Foundation).

X Organization

Annabelle McIver and Carroll Morgan. Their chapter reports work carried out
with Jeff Sanders, Thai Son Hoang and Karen Seidel. It was supported in the
UK by the EPSRC and in Australia by the ARC. An earlier version of Sect. 1–5
of their chapter first appeared in the South African Computer Journal [42],who
have graciously allowed it to be reprinted. Section 6 is new; it is based on (and
extends) one of the lectures of the Summer School. The SACJ article was in turn
a“transliteration”of a still earlier work [194] concerning probabilistic Generalized
Substitutions [3]Chapters 1,2 and Sect. 3.1 of a text [181] by the same authors
provides further insight into the material of Sect. 1–5.

Zhiming Liu and Mathai Joseph. Zhiming Liu’s work has been supported by
the UNU-IIST Research Project on Formal Methods of Object and Component
Systems and the project HighQSoftD funded by Macao Science and Technology
Fund, and the Chinese NSF project 60573085.

Ana Cavalcanti and Jim Woodcock. Their contribution is partially funded by
the Royal Society of London and by QinetiQ Malvern, but their greatest debt
is to Tony Hoare and He Jifeng for their inspirational work in unifying theories.
The authors were the Formal Methods Europe Lecturers at the PSS 2004, and
are grateful to FME for their support of this event, where their chapter was first
presented. Earlier versions of the material were presented at the Universities of
Oxford, Kent, and York, at QinetiQ Malvern, at the Danish Technical University,
and as an invited tutorial at Integrating Formal Methods, IFM 2004. The authors
have benefited from discussions with Chen Yifeng about closure; their proof of
R2-L0 is based on his original idea. Augusto Sampaio made a large number of
detailed and useful comments on the technical material in the chapter.

Phil Clayton and Colin O’Halloran. Simulink is a registered trademark.

David Déharbe. His chapter subsumes and improves on his work in Logic for
Concurrency and Synchronisation, volume 18 of Trends in Logic.

Table of Contents

Refinement: An Overview . 1
Ana Cavalcanti, Augusto Sampaio, Jim Woodcock

Transformation Laws for Sequential Object-Oriented Programming 18
Augusto Sampaio, Paulo Borba

Using CSP . 64
Jim Davies

Developing and Reasoning About Probabilistic Programs in pGCL 123
Annabelle McIver, Carroll Morgan

Real-Time and Fault-Tolerant Systems . 156
Zhiming Liu, Mathai Joseph

A Tutorial Introduction to CSP in Unifying Theories
of Programming . 220

Ana Cavalcanti, Jim Woodcock

Using the Compliance Notation in Industry . 269
Phil Clayton, Colin O’Halloran

Techniques for Temporal Logic Model Checking . 315
David Déharbe

Elementary Probability Theory . 368

Proofs of Lemmas and Theorems in the UTP . 369

Library Block Specifications . 375

Author Index . 393

