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Preface

The Pernambuco School on Software Engineering (PSSE) 2004 was the first in
a series of events devoted to the study of advanced computer science and to
the promotion of international scientific collaboration. The main theme in 2004
was refinement (or reification). Refinement describes the verifiable relationship
between a specification and its implementation; it also describes the process of
discovering appropriate implementations, given a specification. Thus, in one way
or another, refinement is at the heart of the programming process, and so is the
major daily activity of every professional software engineer. The Summer School
and its proceedings were intended to give a detailed tutorial introduction to the
scientific basis of this activity.

These proceedings record the contributions from the invited lecturers. Each
chapter is the result of a thorough revision of the initial notes provided to the
participants of the school. The revision was inspired by the synergy generated
by the opportunity for the lecturers to present and discuss their work among
themselves, and with the school’s attendees. The editors have tried to produce
a coherent view of the topic by harmonizing these contributions, smoothing out
differences in notation and approach, and providing links between the lectures.
We apologize to the authors for any errors introduced by our extensive editing.

Although the chapters are linked in several ways, each one is sufficiently self-
contained to be read in isolation. Nevertheless, Chap. 1 should be read first by
those interested in an introduction to refinement.

Chapter 1. We begin by setting the scene, introducing ideas and notations that
are taken as general background by the lecturers. We discuss program seman-
tics, using Dijkstra’s language of guarded commands as an illustration. We start
with program assertions—perhaps the most widely used formal method in pro-
gramming (assertions form about 1% of Microsoft Windows code)—and then
continue with predicate transformers. We describe the basic notions of refine-
ment, and discuss a simple refinement algebra. Then we relate this to program
development by formalizing the process of stepwise refinement of specifications
into programs. Finally, we describe a useful mathematical structure: the lat-
tice of specifications ordered by refinement. Each of the following four chapters
uses these ideas to illustrate refinement for a given paradigm: object orientation,
concurrency, probabilistic programs, and real-time and fault-tolerant systems.

Chapter 2. Sampaio and Borba describe refinement in the object-oriented set-
ting, illustrating the ideas using sequential Java, although their work is of general
applicability. Their approach is algebraic: they give laws for reasoning about and
refining object-oriented programs. They discuss soundness with respect to predi-
cate transformer semantics, and demonstrate completeness by showing that their
set of laws is comprehensive enough to be able to reduce any program to a nor-
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mal form. Finally, they show how their laws can be used to refactor programs,
in order to adapt their structure while preserving their semantics.

Chapter 3. Davies describes refinement of concurrent and distributed systems
using the notations of CSP. He starts by introducing CSP as a process alge-
bra, with a set of operators and a rich collection of laws for reasoning about
the behavior of processes. The denotational semantics of the language is used
to give a simple notion of refinement between processes: every behavior of an
implementation must be a specified behavior. These ideas are explored through
an example involving protocols and their service specifications.

Chapter 4. McIver and Morgan add probabilistic nondeterminism to Dijkstra’s
guarded command language. They make a corresponding change to the program-
ming logic, replacing weakest preconditions by greatest pre-expectations. These
are generalizations of predicates that can be used to express the probability that
a program achieves a postcondition. They explain how we can extend standard
reasoning concepts like invariants and variants to handle probabilistic programs.
They give a series of examples and two longer case studies.

Chapter 5. Liu and Joseph deal with refinement in real-time and fault-tolerant
systems. They use transition systems as their computational model and
Lamport’s “Temporal Logic of Actions (TLA)” as a specification language in
reasoning about functional correctness, timing properties, fault-tolerance, and
schedulability. Their work is explained through an example of the interface be-
tween a processor and a memory device.

Chapter 6. Cavalcanti and Woodcock introduce “Unifying Theories of Program-
ming” as a uniform foundation for all these paradigms. They give a tutorial in-
troduction to an alphabetized version of Tarksi’s relational calculus. They show
how this leads to a simple denotational semantics of a language of terminating
programs, and show that they form a complete lattice. They extend this work
to Hoare-He designs, a relational model of pre- and postcondition specifications,
exploring the space of designs as a subtheory of relations characterized by cer-
tain healthiness conditions. Then they turn their attention to another relational
subtheory—reactive processes—once again characterized by healthiness condi-
tions. Finally, they show that the reactive image of the design lattice gives a
suitable semantic model for CSP. They end by comparing this semantics with
the model given by Davies in his chapter. After this survey of refinement and its
different theories, the final two chapters are on mechanical or automated support
for refinement.

Chapter 7. Clayton and O’Halloran describe the practice of refinement in in-
dustry. They have designed the “Compliance Notation” for demonstrating the
refinement relation between software and its specification. They have built a tool
to support this demonstration, an essential item for industrial-scale application
of refinement. They describe an extended example of a correctness argument for
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programs written in the Spark Ada subset. They present an application involv-
ing the correct implementation of control laws that govern control systems.

Chapter 8. Déharbe presents a very successful approach to verification, whose
high level of automation has made it very attractive to industry. This chapter
presents the main temporal logics used for specification of properties, and the
main structures and algorithms used in tools. Widely used tools like SPIN and
SMV are discussed. The approach is briefly compared with that adopted for
model checking of CSP processes.

We are grateful to the members of the Organizing Committee, who worked
very hard to provide an enjoyable experience for all of us. Without the support
of our sponsors, PSSE 2004 could not have been a reality. Their recognition of
the importance of this event for the Software Engineering community in Latin
America is greatly appreciated. We would also like to thank all the lecturers for
their invaluable technical and scientific contribution, and for their commitment
to the event; the effort of all authors is greatly appreciated. Finally, we are
grateful to all the participants of the school. They are the main focus of the
whole event.

April 2006 Ana Cavalcanti
Augusto Sampaio

Jim Woodcock
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