Abstract
In an earlier paper I constructed a large family of pseudorandom sequences by using the discrete logarithm. While the sequences in this construction have strong pseudorandom properties, they can be generated very slowly since no fast algorithm is known to compute ind n. The purpose of this paper is to modify this family slightly so that the members of the new family can be generated much faster, and they have almost as good pseudorandom properties as the sequences in the original family.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahlswede, R., Mauduit, C., Sárközy, A.: Large families of pseudorandom sequences of k symbols and their complexity, Part I, Part II. In: Ahlswede, R., Bäumer, L., Cai, N., Aydinian, H., Blinovsky, V., Deppe, C., Mashurian, H. (eds.) General Theory of Information Transfer and Combinatorics. LNCS, vol. 4123, pp. 293–307, 308–325. Springer, Heidelberg (2006)
Ahlswede, R., Khachatrian, L.H., Mauduit, C., Sárközy, A.: A complexity measure for families of binary sequences. Periodica Math. Hungar. 46, 107–118 (2003)
Cassaigne, J., Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences VII: The measures of pseudorandomness. Acta Arith. 103, 97–118 (2002)
Goubin, L., Mauduit, C., Sárközy, A.: Construction of large families of pseudorandom binary sequences. J. Number Theory 106(1), 56–69 (2004)
Gyarmati, K.: On a family of pseudorandom binary sequences. Period. Math. Hungar. 49(2), 45–63 (2004)
Gyarmati, K.: On a pseudorandom property of binary sequences. Ramanujan J. 8(3), 289–302 (2004)
Heath-Brown, D.R.: Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression. Proc. London Math. Soc. 64, 265–338 (1992)
Koblitz, N.: A Course in Number Theory and Cryptography. Graduate Texts in Mathematics, vol. 114. Springer, New-York (1994)
Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences I: Measures of pseudorandomness, the Legendre symbol. Acta Arith. 82, 365–377 (1997)
Mauduit, C., Sárközy, A.: On the measures of pseudorandomness of binary sequences. Discrete Math. 271, 195–207 (2003)
Mauduit, C., Rivat, J., Sárközy, A.: Construction of pseudorandom binary sequences using additive characters. Monatshefte Math. 141(3), 197–208 (2004)
Sárközy, A.: A finite pseudorandom binary sequence. Studia Sci. Math. Hungar. 38, 377–384 (2001)
Weil, A.: Sur les courbes algébriques et les variétés qui s’en déduisent. Act. Sci. Ind. 1041, Hermann, Paris (1948)
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gyarmati, K. (2006). On a Fast Version of a Pseudorandom Generator. In: Ahlswede, R., et al. General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol 4123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889342_18
Download citation
DOI: https://doi.org/10.1007/11889342_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46244-6
Online ISBN: 978-3-540-46245-3
eBook Packages: Computer ScienceComputer Science (R0)