Abstract
We give a condition for a Borel measure on R [0,1] which is sufficient for the validity of an AD-type correlation inequality in the function space.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahlswede, R., Daykin, D.: An inequality for weights of two families of sets, their unions and intersections, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 93, 183–185 (1979)
Karlin, S., Rinott, Y.: Classes of orderings of measures and related correlation inequalities, I. Multivariate Totally Positive Distributions, Journal of Multivariate Analysis 10, 467–498 (1980)
Kemperman, J.: On the FKG inequality for measures in a partially ordered space. Indag. Math. 39, 313–331 (1977)
Birkhoff, G.: Lattice Theory, Providence, RI (1967)
Doob, J.: Stochastic Processes. Wiley, New York (1967)
Fortuin, C., Kasteleyn, P., Ginibre, J.: Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22, 89–103 (1971)
Holley, R.: Remarks on the FKG inequalities. Comm. Math. Phys. 36, 227–231 (1974)
Preston, C.: A generalization of the FKG inequalities. Comm. Math. Phys. 36, 233–241 (1974)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ahlswede, R., Blinovsky, V. (2006). Correlation Inequalities in Function Spaces. In: Ahlswede, R., et al. General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol 4123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889342_34
Download citation
DOI: https://doi.org/10.1007/11889342_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46244-6
Online ISBN: 978-3-540-46245-3
eBook Packages: Computer ScienceComputer Science (R0)