Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4123))

  • 1897 Accesses

Abstract

We give a condition for a Borel measure on R [0,1] which is sufficient for the validity of an AD-type correlation inequality in the function space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlswede, R., Daykin, D.: An inequality for weights of two families of sets, their unions and intersections, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 93, 183–185 (1979)

    Google Scholar 

  2. Karlin, S., Rinott, Y.: Classes of orderings of measures and related correlation inequalities, I. Multivariate Totally Positive Distributions, Journal of Multivariate Analysis 10, 467–498 (1980)

    MATH  MathSciNet  Google Scholar 

  3. Kemperman, J.: On the FKG inequality for measures in a partially ordered space. Indag. Math. 39, 313–331 (1977)

    MathSciNet  Google Scholar 

  4. Birkhoff, G.: Lattice Theory, Providence, RI (1967)

    Google Scholar 

  5. Doob, J.: Stochastic Processes. Wiley, New York (1967)

    Google Scholar 

  6. Fortuin, C., Kasteleyn, P., Ginibre, J.: Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22, 89–103 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  7. Holley, R.: Remarks on the FKG inequalities. Comm. Math. Phys. 36, 227–231 (1974)

    Article  MathSciNet  Google Scholar 

  8. Preston, C.: A generalization of the FKG inequalities. Comm. Math. Phys. 36, 233–241 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahlswede, R., Blinovsky, V. (2006). Correlation Inequalities in Function Spaces. In: Ahlswede, R., et al. General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol 4123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889342_34

Download citation

  • DOI: https://doi.org/10.1007/11889342_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46244-6

  • Online ISBN: 978-3-540-46245-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics