Abstract
A method for finding asymptotic lower bounds on information divergence is developed and used to determine the rate of convergence in the Central Limit Theorem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amari, S.I.: Information geometry on hierarchy of probability distributions. IEEE Trans. Inform. Theory 47, 1701–1711 (2001)
Cover, T., Thomas, J.A.: Elements of Information Theory. Wiley, Chichester (1991)
Feller, W.: An Introduction to Probability Theory and its Applications, 2nd edn., vol. 2. Wiley, New York (1971)
Gupta, A.K., Móri, T.F., Székely, G.J.: Testing for Poissonity-normality vs. other infinite divisibility. Stat. Prabab. Letters 19, 245–248 (1994)
Harremoës, P.: Convergence to the Poisson distribution in information divergence, Technical Report 2, Mathematical department, University of Copenhagen (2003)
Jaynes, E.T.: Information theory and statistical mechanics, I and II. Physical Reviews 106 and 108, 620–630, 171–190 (1957)
Johnson, O., Barron, A.: Fisher information inequalities and the central limit theorem (preprint, 2001)
Klaassen, C.A.J., Mokveld, P.J., van Es, B.: Squared skewness minus kurtosis bounded by 186/125 for unimodal distributions. Statistical and Probability Letters 50(2), 131–135 (2000)
Kondratenko, A.E.: The relation between a rate of convergence of moments of normed sums and the Chebyshev-Hermite moments. Theory Probab. Appl. 46(2), 352–355 (2002)
Mayer-Wolf, E.: The Cramér-Rao functional and limiting laws. Ann. of Probab. 18, 840–850 (1990)
Pearson, K.: Mathematical contributions to the theory of evolution, xix; second supplement to a memoir on skew variation. Philos. Trans. Roy. Soc. London Ser. A 216, 257–429 (1916)
Rohatgi, V.K., Székely, G.J.: Sharp inequalities between skewness and kurtosis. Statist. Probab. Lett. 8, 197–299 (1989)
Topsøe, F.: Information theoretical optimization techniques. Kybernetika 15(1), 8–27 (1979)
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Harremoës, P. (2006). Lower Bounds for Divergence in the Central Limit Theorem. In: Ahlswede, R., et al. General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol 4123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889342_35
Download citation
DOI: https://doi.org/10.1007/11889342_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46244-6
Online ISBN: 978-3-540-46245-3
eBook Packages: Computer ScienceComputer Science (R0)