Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4123))

Abstract

Consider \((X,{\mathcal E})\), where X is a finite set and \({\mathcal E}\) is a system of subsets whose union equals X. For every natural number n ∈ℕ define the cartesian products X n =∏1 n X and \({\mathcal E}_n=\prod_1^n{\mathcal E}\). The following problem is investigated: how many sets of \({\mathcal E}_n\) are needed to cover X n ? Let this number be denoted by c(n). It is proved that for all n ∈ℕ

\(\exp\{C\cdot n\}\leq c(n)\leq\exp\{Cn+\log n+\log\log|X|\}+1.\)

A formula for C is given. The result generalizes to the case where X and \({\mathcal E}\) are not necessarily finite and also to the case of non–identical factors in the product. As applications one obtains estimates on the minimal size of an externally stable set in cartesian product graphs and also estimates on the minimal number of cliques needed to cover such graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shannon, C.E.: The zero–error capacity of a noisy channel. IRE Trans. Inform. Theory IT–2, 8–19 (1956)

    Article  MathSciNet  Google Scholar 

  2. Shannon, C.E.: Certain results in Coding Theory for noisy channels. Inform. and Control 1, 6–25 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berge, C.: Graphes et Hypergraphes, Monographies universitaires de mathématiques, Dunod Paris (1970)

    Google Scholar 

  4. von Neumaun, J., Morgenstern, O.: Theory of Games and Economic Behaviour. Princeton University Press, Princeton (1944)

    Google Scholar 

  5. Ahlswede, R.: Channel capacities for list codes. J. Appl. Probability 10, 824–836 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Markosian, A.G.: The number of internal stability in a cartesian product graph and it’s application to information theory (in Russian). In: The Second International Symposium on Information Theory, Tsahkadsor, Armenian SSR, September, pp. 2–8 (1971)

    Google Scholar 

  7. Kolmogoroff, A.N., Tichomirow, W.M.: ε–Entropie and ε–Kapazität von Mengen in Funktionalr”aumen (Translation from the Russian), Arbeiten zur Informationstheorie III, Mathematische Forschungsberichte, VEB Deutscher Verlag der Wissenschaften, Berlin (1960)

    Google Scholar 

  8. Rogers, C.A.: Packing and Covering. Cambridge Tracts in Mathematics and Mathematical Physics. University Press, Cambridge (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahlswede, R. (2006). Appendix: On Set Coverings in Cartesian Product Spaces. In: Ahlswede, R., et al. General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol 4123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889342_58

Download citation

  • DOI: https://doi.org/10.1007/11889342_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46244-6

  • Online ISBN: 978-3-540-46245-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics