Abstract
This contribution presents a unified adversarial model for fault analysis which considers various natures of faults and attack scenarios with a focus on pervasive low-cost cryptographic devices. According to their fault induction techniques we distinguish the non-invasive adversary, the semi-invasive adversary, and the invasive adversary. We introduce an implementation based concept of achievable spatial and time resolution that results from the physical fault induction technique. Generic defense strategies are reviewed.
This is a revised version of [15]. Follow-up work to this contribution can be found in [16]. The work described in this paper has been supported in part by the European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT, the European Network of Excellence in Cryptology.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
ISO 13491-1:1998 Banking – Secure cryptographic devices (retail)– Part 1: Concepts, requirements and evaluation methods
Common Methodology for Information Technology Security Evaluation, CEM-99/045, Part 2: Evaluation Methodology (1999)
FIPS PUB 140-2, Security Requirements for Cryptographic Modules (2001)
Anderson, R., Kuhn, M.: Tamper Resistance — A Cautionary Note. In: Proceedings of the Second USENIX Workshop on Electronic Commerce, pp. 1–11 (1996)
Avoine, G.: Adversarial Model for Radio Frequency Identification Technical report (2005), Available at: http://eprint.iacr.org/2005/049
Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s Apprenctice’s Guide to Fault Attacks. In: Workshop on Fault Detection and Tolerance in Cryptography (2004)
Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s Apprenctice’s Guide to Fault Attacks, Technical report (2004), available at: http://eprint.iacr.org/2004/100
Biham, E., Shamir, A.: The Next Stage of Differential Fault Analysis: How to break completely unknown cryptosystems (1996), available at: http://jya.com/dfa.htm
Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)
Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hardware Tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004)
Havener, W.N., Medlock, R.J., Mitchell, L.D., Walcott, R.J.: Derived Test Requirements for FIPS PUB 140-1, Security Requirements for Cryptographic Modules (1995)
Joye, M., Quisquater, J.-J., Yen, S.-M., Yung, M.: Observability analysis - detecting when improved cryptosystems fail. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 17–29. Springer, Heidelberg (2002)
Kömmerling, O., Kuhn, M.G.: Design Principles for Tamper-Resistant Smartcard Processors. In: Proceedings of the USENIX Workshop on Smartcard Technology (Smartcard 1999), pp. 9–20 (1999)
Lemke, K., Paar, C.: An Adversarial Model for Fault Analysis against Low-Cost Cryptographic Devices. In: Workshop on Fault Detection and Tolerance in Cryptography, pp. 82–94 (2005)
Lemke, K., Paar, C., Sadeghi, A.-R.: Physical Security Bounds Against Tampering. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 253–267. Springer, Heidelberg (2006)
Leveugle, R.: Early Analysis of Fault Attack Effects for Cryptographic Hardware. In: Workshop on Fault Detection and Tolerance in Cryptography (2004)
Liardet, P.-Y., Teglia, Y.: From Reliability to Safety. In: Workshop on Fault Detection and Tolerance in Cryptography (2004)
May, D., Muller, H.L., Smart, N.P.: Random Register Renaming to Foil DPA. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 28–38. Springer, Heidelberg (2001)
Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN Structures, with Application to the AES and KHAZAD. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)
Samyde, D., Quisquater, J.-J.: Eddy Current for Magnetic Analysis with Active Sensor. In: Proceedings of ESmart 2002, pp. 185–194 (2002)
Skorobogatov, S.P., Anderson, R.J.: Optical Fault Induction Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003)
Skorobogatov, S.S.: Semi-invasive attacks — A new approach to hardware security analysis. Technical report (2005), Available at: http://www.cl.cam.ac.uk/techreports/ucam-cl-tr-630.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lemke-Rust, K., Paar, C. (2006). An Adversarial Model for Fault Analysis Against Low-Cost Cryptographic Devices. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, JP. (eds) Fault Diagnosis and Tolerance in Cryptography. FDTC 2006. Lecture Notes in Computer Science, vol 4236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889700_13
Download citation
DOI: https://doi.org/10.1007/11889700_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46250-7
Online ISBN: 978-3-540-46251-4
eBook Packages: Computer ScienceComputer Science (R0)