Skip to main content

An Adversarial Model for Fault Analysis Against Low-Cost Cryptographic Devices

  • Conference paper
Fault Diagnosis and Tolerance in Cryptography (FDTC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4236))

  • 783 Accesses

Abstract

This contribution presents a unified adversarial model for fault analysis which considers various natures of faults and attack scenarios with a focus on pervasive low-cost cryptographic devices. According to their fault induction techniques we distinguish the non-invasive adversary, the semi-invasive adversary, and the invasive adversary. We introduce an implementation based concept of achievable spatial and time resolution that results from the physical fault induction technique. Generic defense strategies are reviewed.

This is a revised version of [15]. Follow-up work to this contribution can be found in [16]. The work described in this paper has been supported in part by the European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT, the European Network of Excellence in Cryptology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ISO 13491-1:1998 Banking – Secure cryptographic devices (retail)– Part 1: Concepts, requirements and evaluation methods

    Google Scholar 

  2. Common Methodology for Information Technology Security Evaluation, CEM-99/045, Part 2: Evaluation Methodology (1999)

    Google Scholar 

  3. FIPS PUB 140-2, Security Requirements for Cryptographic Modules (2001)

    Google Scholar 

  4. Anderson, R., Kuhn, M.: Tamper Resistance — A Cautionary Note. In: Proceedings of the Second USENIX Workshop on Electronic Commerce, pp. 1–11 (1996)

    Google Scholar 

  5. Avoine, G.: Adversarial Model for Radio Frequency Identification Technical report (2005), Available at: http://eprint.iacr.org/2005/049

  6. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s Apprenctice’s Guide to Fault Attacks. In: Workshop on Fault Detection and Tolerance in Cryptography (2004)

    Google Scholar 

  7. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s Apprenctice’s Guide to Fault Attacks, Technical report (2004), available at: http://eprint.iacr.org/2004/100

  8. Biham, E., Shamir, A.: The Next Stage of Differential Fault Analysis: How to break completely unknown cryptosystems (1996), available at: http://jya.com/dfa.htm

  9. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)

    Google Scholar 

  10. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

    Google Scholar 

  11. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hardware Tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Havener, W.N., Medlock, R.J., Mitchell, L.D., Walcott, R.J.: Derived Test Requirements for FIPS PUB 140-1, Security Requirements for Cryptographic Modules (1995)

    Google Scholar 

  13. Joye, M., Quisquater, J.-J., Yen, S.-M., Yung, M.: Observability analysis - detecting when improved cryptosystems fail. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 17–29. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Kömmerling, O., Kuhn, M.G.: Design Principles for Tamper-Resistant Smartcard Processors. In: Proceedings of the USENIX Workshop on Smartcard Technology (Smartcard 1999), pp. 9–20 (1999)

    Google Scholar 

  15. Lemke, K., Paar, C.: An Adversarial Model for Fault Analysis against Low-Cost Cryptographic Devices. In: Workshop on Fault Detection and Tolerance in Cryptography, pp. 82–94 (2005)

    Google Scholar 

  16. Lemke, K., Paar, C., Sadeghi, A.-R.: Physical Security Bounds Against Tampering. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 253–267. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Leveugle, R.: Early Analysis of Fault Attack Effects for Cryptographic Hardware. In: Workshop on Fault Detection and Tolerance in Cryptography (2004)

    Google Scholar 

  18. Liardet, P.-Y., Teglia, Y.: From Reliability to Safety. In: Workshop on Fault Detection and Tolerance in Cryptography (2004)

    Google Scholar 

  19. May, D., Muller, H.L., Smart, N.P.: Random Register Renaming to Foil DPA. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 28–38. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN Structures, with Application to the AES and KHAZAD. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Samyde, D., Quisquater, J.-J.: Eddy Current for Magnetic Analysis with Active Sensor. In: Proceedings of ESmart 2002, pp. 185–194 (2002)

    Google Scholar 

  22. Skorobogatov, S.P., Anderson, R.J.: Optical Fault Induction Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Skorobogatov, S.S.: Semi-invasive attacks — A new approach to hardware security analysis. Technical report (2005), Available at: http://www.cl.cam.ac.uk/techreports/ucam-cl-tr-630.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lemke-Rust, K., Paar, C. (2006). An Adversarial Model for Fault Analysis Against Low-Cost Cryptographic Devices. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, JP. (eds) Fault Diagnosis and Tolerance in Cryptography. FDTC 2006. Lecture Notes in Computer Science, vol 4236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889700_13

Download citation

  • DOI: https://doi.org/10.1007/11889700_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46250-7

  • Online ISBN: 978-3-540-46251-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics