Skip to main content

Segmentation of Dynamic Emission Tomography Data in Projection Space

  • Conference paper
Computer Vision Approaches to Medical Image Analysis (CVAMIA 2006)

Abstract

Dynamic emission tomography is a technique used for quantifying the biochemical and physiological processes within the body. For certain neuroimaging applications, like kinetic modelling in positron emission tomography (PET), segmenting the measured data into a fewer number of regions-of-interest (ROI) is an important procedure needed for calculation of regional time-activity curves (TACs). Conventional estimation of regional activities in image domain suffers from substantial errors due to the reconstruction artifacts and segmentation inaccuracies. In this study, we present an approach for separating the dynamic tomographic data directly in the projection space using the least-squares method. Sinogram ROIs are the fractional parts of different tissue types measured at each voxel. Regional TACs can be estimated from the segmented sinogram ROIs, thereby avoiding the image reconstruction step. The introduced technique was validated with the two dynamic synthetic phantoms simulated based on 11C- and 18F-labelled tracer distributions. From the quantitative point of view, TAC estimation from the segmented sinograms yielded more accurate results compared to the image-based segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kamasak, M.E., Bouman, C.A., Morris, E.D., Sauer, K.: Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Tran. Med. Imag. 24(5), 636–650 (2005)

    Article  Google Scholar 

  2. Passchier, J., Gee, A., Willemsen, A., Vaalburg, W., van Waarde, A.: Measuring drug-related receptor occupancy with positron emission tomography. Methods 27, 278–286 (2002)

    Article  Google Scholar 

  3. Ashburner, J., Haslam, J., Taylor, C., Cunningham, V.J., Jones, T.: A cluster analysis approach for the characterization of dynamic PET data. In: Myers, R., Cunningham, V., Bailey, D., Jones, T. (eds.) Quantification of Brain Function using PET, pp. 301–306. Academic, San Diego (1996)

    Chapter  Google Scholar 

  4. Chen, J.L., Gunn, S., Nixon, M.S., Gunn, R.N.: Markov random field models for segmentation of PET images. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 468–474. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Wong, K.-P., Feng, D., Meikle, S., Fulham, M.: Segmentation of dynamic PET images using cluster analysis. IEEE Trans. Nucl. Sci. 49(1), 200–207 (2002)

    Article  Google Scholar 

  6. Brankov, J.G., Galatsanos, N.P., Yang, Y.Y., Wernick, M.N.: Segmentation of dynamic PET or fMRI images based on a similarity metric. IEEE Trans. Nucl. Sci. 50(5), 1410–1414 (2003)

    Article  Google Scholar 

  7. Kim, J., Feng, D.D., Cai, T.W., Eberl, S.: Automatic 3D temporal kinetics segmentation of dynamic emission tomography image using adaptive region growing cluster analysis. In: Nucl. Sci. Symposium Conf. Record, vol. 3, pp. 1580–1583 (2002)

    Google Scholar 

  8. Parker, B., Feng, D.D.: Variational segmentation and PCA applied to dynamic PET analysis. In: Jin, J.S., Eades, P., Feng, D.D., Yan, H. (eds.) Proc. Pan-Sydney Workshop on Visual Information Processing (VIP2002), Adelaide Australia. Conferences in Research and Practice in Information Technology, vol. 22, pp. 89–92 (2002)

    Google Scholar 

  9. Koivistoinen, H., Tohka, J., Ruotsalainen, U.: Comparison of pattern classification methods in segmentation of dynamic PET brain images. In: Proc. of Sixth Nordic Signal Processing Symposium. NORSIG 2004, pp. 73–76 (2004)

    Google Scholar 

  10. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. Society of Industrial and Applied Mathematics (2001)

    Google Scholar 

  11. Formiconi, A.R.: Least squares algorithm for region-of-interest evaluation in emission tomography. IEEE Tran. Med. Imag. 12(1), 90–100 (1993)

    Article  Google Scholar 

  12. Reutter, B.W., Gullberg, G.T., Huesman, R.H.: Direct least-squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B-splines. IEEE Tran. Med. Imag. 19(5), 434–450 (2000)

    Article  Google Scholar 

  13. Trefethen, L.N., Bau III, D.: Numerical linear algebra. Society of Industrial and Applied Mathematics, Philadelphia (1997)

    Google Scholar 

  14. Zubal, I., Hurrell, C., Smith, E., Rattner, Z., Gindi, G., Hoffer, P.: Computerized three-dimensional segmented human anatomy. Med. Phys. 21(2), 299–302 (1994)

    Article  Google Scholar 

  15. Reilhac, A., Lartizien, C., Costes, N., Sans, S., Comtat, C., Gunn., R.N., Evans, A.C.: PET-SORTEO: A Monte Carlo-based simulator with high count rate capabilities. IEEE Trans. Nuc. Sci. 51(1), 46–52 (2004)

    Article  Google Scholar 

  16. Magadan-Mendez, M., Kivimäki, A., Ruotsalainen, U.: ICA separation of functional components from dynamic cardiac PET data. In: IEEE Nucl. Sci. Symposium Conference Record, vol. 4, pp. 2618–2622 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krestyannikov, E., Tohka, J., Ruotsalainen, U. (2006). Segmentation of Dynamic Emission Tomography Data in Projection Space. In: Beichel, R.R., Sonka, M. (eds) Computer Vision Approaches to Medical Image Analysis. CVAMIA 2006. Lecture Notes in Computer Science, vol 4241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889762_10

Download citation

  • DOI: https://doi.org/10.1007/11889762_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46257-6

  • Online ISBN: 978-3-540-46258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics