Abstract
This paper presents an integrated algorithm for MRI (Magnetic Resonance Imaging) brain tissues segmentation. The method is composed of four stages. Noise in the MRI images is first reduced by a versatile wavelet-based filter. Then, the watershed algorithm is applied to brain tissues as an initial segmenting method. Because the result of classical watershed algorithm on grey-scale textured images such as tissue images is over-segmentation. The third stage is a merging process for the over-segmentation regions using fuzzy clustering algorithm (Fuzzy C-Means). But there are still some regions which are not divided completely due to the low contrast in them, particularly in the transitional regions of gray matter and white matter, or cerebrospinal fluid and gray matter. We exploited a method base on Minimum Covariance Determinant (MCD) estimator to detect the regions needed segmentation again, and then partition them by a supervised k-Nearest Neighbor (kNN) classifier. This integrated approach yields a robust and precise segmentation. The efficacy of the proposed algorithm is validated using extensive experiments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pham, D.L., Xu, C.Y., Prince, J.L.: A survey of current methods in medical image segmentation. Ann. Rev. Biomed. Eng. 2, 315–337 (2000) [Technical report version, JHU/ECE 99—01, Johns Hopkins University]
Wells, W.M., Grimson, W.E.L., Kikinis, R., Arrdrige, S.R.: Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15, 429–442 (1996)
Nowak, R.: Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans. Image Process 8(10), 1408–1419 (1999)
Lorenz, C., Krahnstoever, N.: 3D statistical shape models for medical image segmentation [J]. In: Proceedings of the Second International Conference on 3-D Digital Imaging and Modeling (3DIM) 1999, pp. 394–404 (1999)
Pham, D., Xu, C., Prince, J.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–337 (2000)
Bezdek, J., Hall, L., Clarke, L.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20(4), 1033–1048 (1993)
Clark, M., Hall, L., Goldgof, D., Clarke, L., Velthuizen, R., Silbiger, M.: MRI segmentation using fuzzy clustering techniques. IEEE Eng. Med. Biol. Mag. 13(5), 730–742 (1994)
Clarke, L., Velthuizen, R., Camacho, M., Heine, J., Vaidyanathan, M., Hall, L., Thatcher, R., Silbiger, M.: MRI segmentation: methods and application. Magn. Reson. Imaging 13(3), 343–368 (1995)
Liew, A. W.-C., Yan, H.: An Adaptive Spatial Fuzzy Clustering Algorithm for 3-D MR Image Segmentation, IEEE Transaction on Medical Imaging, vol 22, No 9 (2003).
Niessen, W., Vincken, K., Weickert, J., Haar Romeny, B., Viergever, M.: Multiscale segmentation of threedimensional MR brain images. Internat. J. Comput. Vision 31(2/3), 185–202 (1999)
Kwan, R.-S., Evans, A., Pike, G.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–1097 (1999)
Niessen, W., Vincken, K., Weickert, J., Haar Romeny, B., Viergever, M.: Multiscale segmentation of threedimensional MR brain images. Internat. J. Comput. Vision 31(2/3), 185–202 (1999)
Vincent, L., Soille, P.: Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Transaction on Pattern Analysis And Machine Intelligence 13(6) (1991)
Navon, E., Miller, O., Averbuch, A.: Color image segmentation based on adaptive local thresholds. Image and Vision Computing 23, 69–85 (2005)
Pizurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans. Med. Imaging 22(3), 323–331 (2003)
Kwan, R.-S., Evans, A., Pike, G.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–1097 (1999), Available: http://www.bic.mni.mcgill.ca/brainweb
Rousseeuw, P.J., Driessen, K.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999)
Cocosco, C.A., Zijdenbos, A.P., Evans, A.C.: A fully automatic and robust brain MRI tissue classification method. IEEE Transaction on Medical Image Analysis 7, 513–527 (2003)
Enas, G., Choi, S.: Choice of the smoothing parameter and efficiency of k-nearest neighbour classification. Computers and Mathematics with Applications 12A(2), 235–244 (1986)
Kennedy, D.N., Filipek, P.A., Caviness, V.S.: Anatomic segmentation and volumetric calculations in nuclear magnetic resonance imaging. IEEE Transactions on Medical Imaging 8, 1–7 (1989), Available: http://www.cma.mgh.harvard.edu/ibsr/
Zijdenbos, A., Dawant, B.: Brain segmentation and white matter lesion detection in MR images. Crit. Rev. Biomed. Eng. 22(5–6), 401–465 (1994)
Mount, D., Arya, S.: ANN: Library for approximate nearest neighbor searching (1998), http://www.cs.umd.edu/_mount/ANN/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lu, Y., Wang, J., Kong, J., Zhang, B., Zhang, J. (2006). An Integrated Algorithm for MRI Brain Images Segmentation. In: Beichel, R.R., Sonka, M. (eds) Computer Vision Approaches to Medical Image Analysis. CVAMIA 2006. Lecture Notes in Computer Science, vol 4241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889762_12
Download citation
DOI: https://doi.org/10.1007/11889762_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46257-6
Online ISBN: 978-3-540-46258-3
eBook Packages: Computer ScienceComputer Science (R0)