Abstract
Fuzzy Cognitive Map (FCM) is an advanced modeling methodology that provides flexibility on the system’s design, modeling, simulation and control. This research work combines the Fuzzy Cognitive Map model for tumor grading with Support Vector Machines (SVMs) to achieve better tumor malignancy classification. The classification is based on the histopathological characteristics, which are the concepts of the Fuzzy Cognitive Map model that was trained using an unsupervised learning algorithm, the Nonlinear Hebbian Algorithm. The classification accuracy of the proposed approach is 89.13% for High Grade tumor cases and 85.54%, for tumors of Low Grade. The results of the proposed hybrid approach were also compared with other conventional classifiers and are very promising.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Parker, S.L., Tony, T., Bolden, S., Wingo, P.A.: Cancer Statistics, Cancer Statistics. CA Cancer J. Clinics 47(5), 5–27 (1997)
Ooms, E., Anderson, W., Alons, C., Boon, M., Veldhuizen, R.: Analysis of the performance of pathologists in grading of bladder tumours. Human Pathology 14, 140–143 (1983)
Gil, J., Wu, H., Wang, B.Y.: Image analysis and morphometry in the diagnosis of breast cancer. Microsc. Res. Techniq 59, 109–118 (2002)
Catto, J., Linkens, D., Abbod, M., Chen, M., Burton, J., Feeley, K., Hamdy, F.: Artificial Intelligence in Predicting Bladder Cancer Outcome: A Comparison of Neuro-Fuzzy Modeling and Artificial Neural Networks. Artif. Intell. Med. 9, 4172–4177 (2003)
Choi, H., Vasko, J., Bengtsson, E., Jarkrans, T., Malmstrom, U., Wester, K., Busch, C.: Grading of transitional cell bladder carcinoma by texture analysis of histological sections. Anal. Cell Pathol. 6, 327–343 (1994)
Jarkrans, T., Vasko, J., Bengtsson, E., Choi, H., Malmstrom, U., Wester, K., Busch, C.: Grading of transitional cell bladder carcinoma by image analysis of histological sections. Anal. Cell Pathol. 18, 135–158 (1995)
Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Statistical Classification. Prentice Hall, Englewood Cliffs (1994)
Podgorelec, V., Kokol, P., Stiglic, B., Rozman, I.: Decision Trees: An Overview and Their Use in Medicine. Journal of Medical Systems 26(5), 445–463 (2002)
Dreiseit, S., Ohno-Machado, L., Kittler, H., Vinterbo, S., Billhardt, H., Binder, M.: A Comparison of Machine Learning Methods for the Diagnosis of Pigmented Skin Lesions. Journal of Biomedical Informatics 34, 28–36 (2001)
Antala, P., Fannesa, G., Timmermanb, D., Moreaua, Y., Moor, B.D.: Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection. Artificial Intelligence in Medicine 29, 39–60 (2003)
Stylios, C.D., Groumpos, P.P.: Fuzzy Cognitive Maps in Modelling Supervisory Control Systems. J. of Intelligent & Fuzzy Systems 8, 83–98 (2000)
Papageorgiou, E., Stylios, C., Groumpos, P.: An Integrated Two-Level Hierarchical Decision Making System based on Fuzzy Cognitive Maps (FCMs). IEEE Transactions on Biomedical Engineering 50(12), 1326–1339 (2003)
Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: Active Hebbian Learning to Train Fuzzy Cognitive Maps. Int. J. Approx. Reasoning 37, 219–249 (2004)
Papageorgiou, E.I., Groumpos, P.P.: A weight adaptation method for fine-tuning Fuzzy Cognitive Map causal links. Soft Computing Journal 9, 846–857 (2005)
Papageorgiou, E.I., Spyridonos, P., Ravazoula, P., Stylios, C.D., Groumpos, P.P., Nikiforidis, G.: Advanced Soft Computing Diagnosis Method for Tumor Grading. Artif. Intell. Med. 36, 59–70 (2006)
Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P., Spyridonos, P.P., Ravazoula, P., Nikiforidis, G.C.: The Challenge of Soft Computing Techniques for Tumor Characterization. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1031–1036. Springer, Heidelberg (2004)
Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)
Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)
Muller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An Introduction to Kernel-Based Learning Algorithms. IEEE Trans. Neural Networks 2(2), 181–201 (2001)
Veropoulos, K., Cambell, C., Cristianini, N.: Controlling the sensitivity of support machines. In: Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), Stockholm, pp. 55–60 (1999)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)
Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)
Spyridonos, P., Ravazoula, P., Cavouras, D., Berberidis, K., Nikiforidis, G.: Computer-based grading of haematoxylin-eosin stained tissue sections of urinary bladder carcinomas. Med. Inform. & Intern. Med. 26(3), 179–190 (2001)
Bostwick, G., Ramnani, D., Cheng, L.: Diagnosis and grading of bladder cancer and associated lesions. Urologic Clinics of North America 26, 493–507 (1999)
Salzberg, S.L.: On Comparing Classifiers: Pitfalls to avoid and a Recommended Approach. Data Mining and Knowledge Discovery 1, 317–328 (1997)
Osuna, E.E., Freund, R., Girosi, F.: Support Vector Machines: Training and Applications. MIT Press, Cambridge (1997)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)
Murphy, W.M.: Urothelial neoplasia, Pathology and pathobiology of the urinary bladder and prostate, Baltimore, Williams & Wilkins (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Papageorgiou, E., Georgoulas, G., Stylios, C., Nikiforidis, G., Groumpos, P. (2006). Combining Fuzzy Cognitive Maps with Support Vector Machines for Bladder Tumor Grading. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11892960_63
Download citation
DOI: https://doi.org/10.1007/11892960_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46535-5
Online ISBN: 978-3-540-46536-2
eBook Packages: Computer ScienceComputer Science (R0)