Abstract
In this paper, we demonstrate that simple fuzzy rule-based classification systems with high interpretability are obtained through multiobjective genetic rule selection. In our approach, first a prespecified number of candidate fuzzy rules are extracted from numerical data in a heuristic manner using rule evaluation criteria. Then multiobjective genetic rule selection is applied to the extracted candidate fuzzy rules to find a number of non-dominated rule sets with respect to the classification accuracy and the complexity. The obtained non-dominated rule sets form an accuracy-complexity tradeoff surface. The performance of each non-dominated rule set is evaluated in terms of its classification accuracy and its complexity. Computational experiments show that our approach finds simple fuzzy rules with high interpretability for some benchmark data sets in the UC Irvine machine learning repository.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery of Association Rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)
Coello Coello, C.A., Lamont, G.B.: Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004)
Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston (2002)
Coenen, F., Leng, P.: Obtaining Best Parameter Values for Accurate Classification. In: Proc. of the 5th IEEE International Conference on Data Mining, pp. 549–552 (2005)
Coenen, F., Leng, P., Zhang, L.: Threshold Tuning for Improved Classification Association Rule Mining. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 216–225. Springer, Heidelberg (2005)
Cordon, O., del Jesus, M.J., Herrera, F., Magdalena, L., Villar, P.: A Multiobjective Genetic Learning Process for Joint Feature Selection and Granularity and Contexts Learning in Fuzzy Rule-based Classification Systems. In: Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.) Interpretability Issues in Fuzzy Modeling, pp. 79–99. Springer, Berlin (2003)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)
Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2), 182–197 (2002)
Gonzalez, A., Perez, R.: SLAVE: A Genetic Learning System based on an Iterative Approach. IEEE Trans. on Fuzzy Systems 7(2), 176–191 (1999)
Ishibuchi, H., Murata, T., Turksen, I.B.: Single-Objective and Two-Objective Genetic Algorithms for Selecting Linguistic Rules for Pattern Classification Problems. Fuzzy Sets and Systems 89(2), 135–150 (1997)
Ishibuchi, H., Nakashima, T., Murata, T.: Three-Objective Genetics-based Machine Learning for Linguistic Rule Extraction. Information Sciences 136(1-4), 109–133 (2001)
Ishibuchi, H., Nakashima, T., Nii, M.: Classification and Modeling with Linguistic Information Granules: Advanced Approaches to Linguistic Data Mining. Springer, Berlin (2004)
Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Construction of Fuzzy Classification Systems with Rectangular Fuzzy Rules Using Genetic Algorithms. Fuzzy Sets and Systems 65(2/3), 237–253 (1994)
Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting Fuzzy If-Then Rules for Classification Problems Using Genetic Algorithms. IEEE Trans. on Fuzzy Systems 3(3), 260–270 (1995)
Ishibuchi, H., Yamamoto, T.: Fuzzy Rule Selection by Multi-Objective Genetic Local Search Algorithms and Rule Evaluation Measures in Data Mining. Fuzzy Sets and Systems 141(1), 59–88 (2004)
Jimenez, F., Gomez-Skarmeta, A.F., Sanchez, G., Roubos, H., Babuska, R.: Accurate, Transparent and Compact Fuzzy Models by Multi-Objective Evolutionary Algorithms. In: Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.) Interpretability Issues in Fuzzy Modeling, pp. 431–451. Springer, Berlin (2003)
Wang, H., Kwong, S., Jin, Y., Wei, W., Man, K.F.: Multi-Objective Hierarchical Genetic Algorithm for Interpretable Fuzzy Rule-based Knowledge Extraction. Fuzzy Sets and Systems 149(1), 149–186 (2005)
Wang, H., Kwong, S., Jin, Y., Wei, W., Man, K.F.: Agent-based Evolutionary Approach for Interpretable Rule-based Knowledge Extraction. IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and Reviews 35(2), 143–155 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ishibuchi, H., Nojima, Y., Kuwajima, I. (2006). Finding Simple Fuzzy Classification Systems with High Interpretability Through Multiobjective Rule Selection. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893004_11
Download citation
DOI: https://doi.org/10.1007/11893004_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46537-9
Online ISBN: 978-3-540-46539-3
eBook Packages: Computer ScienceComputer Science (R0)