Abstract
The correct web site text content must be help to the visitors to find what they are looking for. However, the reality is quite different, many times the web page text content is ambiguous, without meaning and worst, it don’t have relation with the topic that is shown as the main theme. One reason to this problem is the lack of contents with concept meaning in the web page, i.e., the utilization of words and sentences that show concepts, which finally is the visitor goal. In this paper, we introduce a new approach for improving the web site text content by extracting Concept-Based Knowledge from data originated in the web site itself. By using the concepts, a web page can be rewrite for showing more relevant information to the eventual visitor. This approach was tested in a real web site, showing its effectiveness
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berendt, B., Spiliopoulou, M.: Analysis of navigation behavior in web sites integrating multiple information systems. The VLDB journal 9, 27–75 (2001)
Chakrabarti, S.: Data Mining for Hypertext: A Tutorial Survey. SIGKDD Explorations 1 (2000)
Eirinaki, M., Lampos, C., Paulakis, S., Vazirgiannis, M.: Web personalization integrating content semantics and navigational patterns. In: WIDM 2004: Proceedings of the 6th annual ACM international workshop on Web information and data management, pp. 72–79. ACM Press, New York (2004)
Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Trans. Inter. Tech. 3(1), 1–27 (2003)
Loh, S., Wives, L.K., de Oliveira, J.P.M.: Concept-based knowledge discovery in texts extracted from the web. SIGKDD Explor. Newsl. 2(1), 29–39 (2000)
Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. Commun. ACM 43(8), 142–151 (2000)
Mulvenna, M.D., Anand, S.S., Buchner, A.G.: Personalization on the net using web mining: introduction. Commun. ACM 43(8), 122–125 (2000)
Nielsen, J.: User Interface directions for the web. Communications of ACM 42(1), 65–72 (1999)
Perkowitz, M.: Adaptative Web Sites: Cluster Mining and Conceptual Clustering for Index Page Synthesis. PhD thesis, Univerity of Washingtong (2001)
Perkowitz, M., Etzioni, O.: Adaptive web sites. Commun. ACM 43(8), 152–158 (2000)
Ríos, S.A., Velásquez, J.D., Yasuda, H., Aoki, T.: Web Site Improvements Based on Representative Pages Identification. In: Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 1162–1166. Springer, Heidelberg (2005)
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM archive 18(11), 613–620 (1975)
Spiliopoulou, M., Mobasher, B., Berendt, B., Nakagawa, M.: A Framework for the Evaluation of Session Reconstruction Heuristics in Web-Usage Analysis. INFORMS J. on Computing 15(2), 171–190 (2003)
Velásquez, J.D., Ríos, S.A., Bassi, A., Yasuda, H., Aoki, T.: Towards the identification of keywords in the web site text content: A methodological approach. International Journal of Web Information Systems 1(1), 11–15 (2005)
Velásquez, J.D., Yasuda, H., Aoki, T., Weber, R.: A new similarity measure to understand visitor behavior in a web site. IEICE Transactions on Information and Systems, Special Issues in Information Processing Technology for web utilization E87-D(2), 389–396 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ríos, S.A., Velásquez, J.D., Yasuda, H., Aoki, T. (2006). Web Site Off-Line Structure Reconfiguration: A Web User Browsing Analysis. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893004_48
Download citation
DOI: https://doi.org/10.1007/11893004_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46537-9
Online ISBN: 978-3-540-46539-3
eBook Packages: Computer ScienceComputer Science (R0)