Abstract
This paper presents a new multi-agent physics-based simulation framework (DISCOVERY), supporting experiments with self-organizing underwater sensor and actuator networks. DISCOVERY models mobile autonomous underwater vehicles, distributed sensor and actuator nodes, as well as multi-agent data-to-decision integration. The simulator is a real-time system using a discrete action model, fractal-based terrain modelling, with 3D visualization and an evaluation mode, allowing to compute various objective functions and metrics. The quantitative measures of multi-agent dynamics can be used as a feedback for evolving the agent behaviors. An evaluation of a simple simulated scenario with a heterogeneous team is also described.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Boer, R., Kok, J.R.: The Incremental Development of a Synthetic Multi-Agent System: The UvA Trilearn 2001 Robotic Soccer Simulation Team. Master’s Thesis, University of Amsterdam, The Netherlands (2002)
Butler, M., Prokopenko, M., Howard, T.: Flexible Synchronisation within RoboCup Environment: A Comparative Analysis. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS, vol. 2019, pp. 119–128. Springer, Heidelberg (2001)
Coldet: an Open Source Collision Detection library, http://www.photoneffect.com/coldet/
Crutchfield, J.: The Calculi of Emergence: Computation, Dynamics, and Induction. Physica D 75, 11–54 (1994)
Dunbabin, M., Roberts, J., Usher, K., Winstanley, G., Corke, P.: A Hybrid AUV Design for Shallow Water Reef Navigation. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 2117–2122 (2005)
Foreman, M., Prokopenko, M., Wang, P.: Phase Transitions in Self-Organising Sensor Networks. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS, vol. 2801, pp. 781–791. Springer, Heidelberg (2003)
Fournier, A., Fussell, D., Carpenter, L.: Computer Rendering of Stochastic Models. Communications of the ACM 25(6), 371–384 (1982)
Gerasimov, V., Guo, Y., James, G.C., Poulton, G.T.: Physically Realistic Self-assembly Simulation System. In: Abraham, A., Grosan, C., Ramos, V. (eds.) Stigmergic Optimization, Studies in Computational Intelligence, pp. 117–130. Springer, Heidelberg (2006)
Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi, S., Osawa, E., Matsubara, H., Noda, I., Asada, M.: The RoboCup Synthetic Agent Challenge. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (1997)
Mahendra, P., Prokopenko, M., Wang, P., Price, D.C.: Towards Adaptive Clustering in Self-monitoring Multi-agent Networks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS, vol. 3682, pp. 796–805. Springer, Heidelberg (2005)
Prokopenko, M., Wang, P., Howard, T.: Cyberoos 2001: ’Deep Behaviour Projection’ Agent Architecture. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS, vol. 2377, pp. 507–510. Springer, Heidelberg (2002)
Prokopenko, M., Wang, P.: Relating the Entropy of Joint Beliefs to Multi-agent Coordination. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS, vol. 2752, pp. 367–374. Springer, Heidelberg (2003)
Prokopenko, M., Wang, P., Price, D.C., Valencia, P., Foreman, M., Farmer, A.J.: Self-organising Hierarchies in Sensor and Communication Networks. Artificial Life, Special issue on Dynamic Hierarchies 11(4), 407–426 (2005)
Prokopenko, M., Wang, P., Foreman, M., Valencia, P., Price, D., Poulton, G.: On connectivity of reconfigurable impact networks in ageless aerospace vehicles. Journal of Robotics and Autonomous Systems 53, 36–58 (2005)
Prokopenko, M., Mahendra, P., Wang, P.: On Convergence of Dynamic Cluster Formation in Multi-agent Networks. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS, vol. 3630, pp. 884–894. Springer, Heidelberg (2005)
Prokopenko, M., Wang, P., Price, D.: Complexity Metrics for Self-monitoring Impact Sensing Networks. In: Proceedings of 2005 NASA/DoD Conference on Evolvable Hardware (EH 2005), Washington D.C., USA (2005)
Prokopenko, M., Poulton, G.T., Price, D.C., Wang, P., Valencia, P., Hoschke, N., Farmer, A.J., Hedley, M., Lewis, C., Scott, D.A.: Self-organising impact sensing networks in robust aerospace vehicles. In: Fulcher, J. (ed.) Advances in Applied Artificial Intelligence, pp. 186–223. Idea Group Inc. (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gerasimov, V., Healy, G., Prokopenko, M., Wang, P., Zeman, A. (2006). Symbiotic Sensor Networks in Complex Underwater Terrains: A Simulation Framework. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893011_41
Download citation
DOI: https://doi.org/10.1007/11893011_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46542-3
Online ISBN: 978-3-540-46544-7
eBook Packages: Computer ScienceComputer Science (R0)