Skip to main content

Predicting Cluster Formation in Decentralized Sensor Grids

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2006)

Abstract

This paper investigates cluster formation in decentralized sensor grids and focusses on predicting when the cluster formation converges to a stable configuration. The traffic volume of inter-agent communications is used, as the underlying time series, to construct a predictor of the convergence time. The predictor is based on the assumption that decentralized cluster formation creates multi-agent chaotic dynamics in the communication space, and estimates irregularity of the communication-volume time series during an initial transient interval. The new predictor, based on the auto-correlation function, is contrasted with the predictor based on the correlation entropy (generalized entropy rate). In terms of predictive power, the auto-correlation function is observed to outperform and be less sensitive to noise in the communication space than the correlation entropy. In addition, the preference of the auto-correlation function over the correlation entropy is found to depend on the synchronous message monitoring method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dhamala, M., Lai, Y.C., Kostelich, E.J.: Analyses of transient chaotic time series. Physical Review E 64, 056207, 1–9 (2001)

    Article  Google Scholar 

  2. Foreman, M., Prokopenko, M., Wang, P.: Phase Transitions in Self-Organising Sensor Networks. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS, vol. 2801, pp. 781–791. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Ghanem, M., Guo, Y., Hassard, J., Osmond, M., Richards, M.: Sensor Grid for Air Pollution Monitoring. In: Proceedings of the 3rd UK e-Science All-hands Conference AHM 2004, Nottingham, UK, pp. 106–113 (2004)

    Google Scholar 

  4. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Physical Review A 28(4), 2591 (1983)

    Article  Google Scholar 

  5. Jánosi, I.M., Tél, T.: Time series analysis of transient chaos. Physical Review E 49(4), 2756–2763 (1994)

    Article  Google Scholar 

  6. Kolmogorov, A.N.: Entropy per unit time as a metric invariant of automorphisms. Doklady Akademii Nauk SSSR 124, 754–755 (1959) (Russian)

    MATH  MathSciNet  Google Scholar 

  7. Lin, R., Gerla, M.: Adaptive Clustering for Mobile Wireless Networks. IEEE Journal on Selected Areas in Communications, 1265–1275 (September 1997)

    Google Scholar 

  8. Mahendra, P., Prokopenko, M., Wang, P., Price, D.C.: Towards Adaptive Clustering in Self-monitoring Multi-agent Networks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS, vol. 3682, pp. 796–805. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Ogston, E., Overeinder, B., Van Steen, M., Brazier, F.: A Method for Decentralized Clustering in Large Multi-Agent Systems. In: The 2nd International Joint Conference on Autonomous Agent and Multi Agent Systems, pp. 798–796 (2003)

    Google Scholar 

  10. Olsson, L., Nehaniv, C.L., Polani, D.: Sensory Channel Grouping and Structure from Uninterpreted Sensor Data. In: 2004 NASA/DoD Conference on Evolvable Hardware (EH 2004), pp. 153–160 (2004)

    Google Scholar 

  11. Prokopenko, M., Wang, P., Price, D.C., Valencia, P., Foreman, M., Farmer, A.J.: Self-organising Hierarchies in Sensor and Communication Networks. Artificial Life, Special issue on Dynamic Hierarchies 11(4), 407–426 (2005)

    Google Scholar 

  12. Prokopenko, M., Wang, P., Foreman, M., Valencia, P., Price, D., Poulton, G.: On connectivity of reconfigurable impact networks in ageless aerospace vehicles. Journal of Robotics and Autonomous Systems 53, 36–58 (2005)

    Article  Google Scholar 

  13. Prokopenko, M., Mahendra, P., Wang, P.: On Convergence of Dynamic Cluster Formation in Multi-agent Networks. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS, vol. 3630, pp. 884–894. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Prokopenko, M., Wang, P., Price, D.: Complexity Metrics for Self-monitoring Impact Sensing Networks. In: Proceedings of 2005 NASA/DoD Conference on Evolvable Hardware (EH 2005), Washington D.C., USA (2005)

    Google Scholar 

  15. Rényi, A.: Probability theory. North-Holland, Amsterdam (1970)

    Google Scholar 

  16. Sinai, Y.G.: On the concept of entropy of a dynamical system. Doklady Akademii Nauk SSSR 124, 768–771 (1959) (Russian)

    MATH  MathSciNet  Google Scholar 

  17. Takens, F.: Detecting strange attractors in turbulence. In: Dynamical systems and turbulence. LNM, vol. 898. Springer, Berlin (1981)

    Google Scholar 

  18. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH:A New Data Clustering Algorithm and Its Applications. Data Mining and Knowledge Discovery 1(2), 141–182 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeman, A., Prokopenko, M. (2006). Predicting Cluster Formation in Decentralized Sensor Grids. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893011_42

Download citation

  • DOI: https://doi.org/10.1007/11893011_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46542-3

  • Online ISBN: 978-3-540-46544-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics