Skip to main content

Stock Index Modeling Using Hierarchical Radial Basis Function Networks

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4253))

  • 1281 Accesses

Abstract

Forecasting exchange rates is an important financial problem that is receiving increasing attention especially because of its difficulty and practical applications. This paper proposes a Hierarchical Radial Basis Function Network (HiRBF) model for forecasting three major international currency exchange rates. Based on the pre-defined instruction sets, HRBF model can be created and evolved. The HRBF structure is developed using the Extended Compact Genetic Programming (ECGP) and the free parameters embedded in the tree are optimized by the Degraded Ceiling Algorithm (DCA). Empirical results indicate that the proposed method is better than the conventional neural network and RBF networks forecasting models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Theodossiou, P.: The stochastic properties of major Canadian exchange rates. The Financial Review 29(2), 193–221 (1994)

    Article  Google Scholar 

  2. So, M.K.P., Lam, K., Li, W.K.: Forecasting exchange rate volatility using autoregressive random variance model. Applied Financial Economics 9, 583–591 (1999)

    Article  Google Scholar 

  3. Hsieh, D.A.: Modeling heteroscedasticity in daily foreign-exchange rates. Journal of Business and Economic Statistics 7, C307–C317 (1989)

    Article  Google Scholar 

  4. Chappel, D., Padmore, J., Mistry, P., Ellis, C.: A threshold model for French franc/Deutsch mark exchange rate. Journal of Forecasting 15, 155–164 (1996)

    Article  Google Scholar 

  5. Refenes, A.N., Azema-Barac, M., Chen, L., Karoussos, S.A.: Currency exchange rate prediction and neural network design strategies. Neural Computing and Application 1, 46–58 (1993)

    Article  Google Scholar 

  6. Yu, L., Wang, S.-Y., Lai, K.K.: Adaptive Smoothing Neural Networks in Foreign Exchange Rate Forecasting. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 523–530. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Wang, W., Lai, K.K., Nakamori, Y., Wang, S.: Forecasting Foreign Exchange Rates with Artificial Neural Networks: A Review. International Journal of Information Technology & Decision Making 3(1), 145–165 (2004)

    Article  Google Scholar 

  8. Chen, Y., Yang, B., Dong, J.: Nonlinear System Modeling via Optimal Design of Neural Trees. International Journal of Neural Systems 14(2), 125–137 (2004)

    Article  Google Scholar 

  9. Chen, Y., Yang, B., Dong, J., Abraham, A.: Time-series Forecasting using Flexible Neural Tree Model. Information Science 174(3-4), 219–235 (2005)

    Article  MathSciNet  Google Scholar 

  10. Yao, J.T., Tan, C.L.: A case study on using neural networks to perform technical forecasting of forex. Neurocomputing 34, 79–98 (2000)

    Article  MATH  Google Scholar 

  11. Sastry, K., Goldberg, D.E.: Probabilistic model building and competent genetic programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practise, Ch. 13, pp. 205–220. Kluwer, Dordrecht (2003)

    Google Scholar 

  12. http://fx.sauder.ubc.ca/

  13. Yu, L., Wang, S.-Y., Lai, K.K.: Adaptive Smoothing Neural Networks in Foreign Exchange Rate Forecasting. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 523–530. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Abraham, A.: Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems. In: IEEE International Conference on Fuzzy Systems (IEEE FUZZ 2002), pp. 1616–1622. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  15. Kirkpatrick, L., et al.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  16. Burke, E.K., et al.: A new local search approach with execution time as an input parameter. Technical Report No. NOTTCS-TR-2002-3, School of Computer Science and Information Technology, University of Nottingham (2002)

    Google Scholar 

  17. MatIsa, N.A., Mashor, M.Y., Othman, N.H.: Diagnosis of Cervical Cancer using Hierarchical Radial Basis Function (HiRBF) Network. In: Yaacob, S., Nagarajan, R., Chekima, A. (eds.) Proc. of the Int. Conf. on Artificial Intelligence in Engineering and Technology, pp. 458–463 (2002)

    Google Scholar 

  18. Ferrari, S., Frosio, I., Piuri, V., Alberto Borghese, N.: Automatic Multiscale Meshing Through HRBF Networks. IEEE Trans. on Instrumentation and Measurment 54(4), 1463–1470 (2005)

    Article  Google Scholar 

  19. Ahmad, Z., Zhang, J.: Bayesian selective combination of multiple neural networks for improving long-range predictions in nonlinear process modelling. Neural Comput & Applic. 14, C78–C87 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y., Peng, L., Abraham, A. (2006). Stock Index Modeling Using Hierarchical Radial Basis Function Networks. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893011_51

Download citation

  • DOI: https://doi.org/10.1007/11893011_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46542-3

  • Online ISBN: 978-3-540-46544-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics