Skip to main content

A Simple 3D Edge Template for Pose Invariant Face Detection

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4253))

  • 1272 Accesses

Abstract

In this paper, a simple 3D edge based template for pose invariant face detection creation using side and front profiles of a general face is proposed. The 3D template is created using the edges that are always most likely to be extracted from a face given a certain pose. Bezier curves are used to create the template. When testing the template, genetic algorithms are used to guide the matching process thereby greatly reducing the total computation time required. The genetic algorithm automatically calculates the angle and the size of the template during the matching. An average pose invariant face detection accuracy of 84.6% was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hofmann, T., Puzicha, J., Buhmann, J.M.: Unsupervised Texture Segmentation in a Deterministic Annealing Framework. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 20(8)

    Google Scholar 

  2. Felzenszwalb, P., Huttenlocher, D.: Image Segmentation Using Local Variation. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 98–104 (1998)

    Google Scholar 

  3. Yu, S., Gross, R., Shi, J.: Concurrent Object Segmentation and Recognition with Graph Partitioning, Neural Information Processing Systems, NIPS

    Google Scholar 

  4. Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-Time Combined 2D+3D Active Appearance Models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (June 2004)

    Google Scholar 

  5. Phillips, P.J., Moon, H., Rauss, P.J., Rizvi, S.: The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10) (October 2000)

    Google Scholar 

  6. Soriano, M., Marszalec, E., Pietikainen, M.: Physics-based face database for color research. Journal of Electronic Imaging 9(1), 32–38 (2000)

    Article  Google Scholar 

  7. Demidov, E.: An Interactive Introduction to Splines (2003) (retrieved April 10, 2005), http://www.ibiblio.org/e-notes/Splines/Intro.htm

  8. Karungaru, S., Fukumi, M., Akamatsu, N.: Detection of human face in visual scenes. In: Proc. of ANZIIS, pp.165–170 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karungaru, S., Fukumi, M., Akamatsu, N., Akashi, T. (2006). A Simple 3D Edge Template for Pose Invariant Face Detection. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893011_88

Download citation

  • DOI: https://doi.org/10.1007/11893011_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46542-3

  • Online ISBN: 978-3-540-46544-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics