Abstract
The performance of ICA algorithms significantly depends on the choice of the contrast function and the optimisation algorithm used in obtaining the demixing matrix. In this paper we focus on the standard linear nonparametric ICA problem from an optimisation point of view. It is well known that after a pre-whitening process, the problem can be solved via an optimisation approach on a suitable manifold. We propose an approximate Newton’s method on the unit sphere to solve the one-unit linear nonparametric ICA problem. The local convergence properties are discussed. The performance of the proposed algorithms is investigated by numerical experiments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boscolo, R., Pan, H., Roychowdhury, V.P.: Independent component analysis based on nonparametric density estimation. IEEE Transactions on Neural Networks 15(1), 55–65 (2004)
Comon, P.: Independent component analysis, a new concept? Signal Processing 36(3), 287–314 (1994)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)
Gretton, A., Bousquet, O., Smola, A.J., Schölkopf, B.: Measuring statistical dependence with Hilbert-S chmidt norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 63–77. Springer, Heidelberg (2005)
Chen, A., Bickel, P.J.: Consistent independent component analysis and prewhitening. IEEE Transactions on Signal Processing 53(10), 3625–3632 (2005)
Hüper, K., Shen, H., Seghouane, A.-K.: Local convergence properties of Fast- ICA and some generalisations. In: Proceedings of the 31st IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2006), pp. V1009–V1012 (2006)
Shen, H., Hüper, K.: Newton-like methods for parallel independent component analysis. To appear in: LSP 2006, Maynooth, Ireland, September 6-8 (2006)
Shen, H., Hüper, K.: Local convergence analysis of FastICA. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 893–900. Springer, Heidelberg (2006)
Shen, H., Hüper, K., Seghouane, A.-K.: Geometric optimisation and FastICA algorithms. To appear in: MTNS 2006, Kyoto, Japan, July 24-28 (2006)
Smith, S.: Optimization techniques on riemannian manifolds. Hamiltonian and gradientflows, algorithms and control, Fields Institute Communications 3, 113–136 (1994)
Cardoso, J.F.: Blind source separation: statistical principles. Proceedings of the IEEE (90), 2099–2026 (1998)
Miller, E.G., Fisher III, J.W.: ICA using spacings estimates of entropy. The Journal of Machine Learning Research 4(7-8), 1271–1295 (2004)
Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: Advances in Neural Information Processing Systems, vol. 8, pp. 757–763 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shen, H., Hüper, K., Smola, A.J. (2006). Newton-Like Methods for Nonparametric Independent Component Analysis. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_119
Download citation
DOI: https://doi.org/10.1007/11893028_119
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46479-2
Online ISBN: 978-3-540-46480-8
eBook Packages: Computer ScienceComputer Science (R0)