Skip to main content

Newton-Like Methods for Nonparametric Independent Component Analysis

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

  • 1468 Accesses

Abstract

The performance of ICA algorithms significantly depends on the choice of the contrast function and the optimisation algorithm used in obtaining the demixing matrix. In this paper we focus on the standard linear nonparametric ICA problem from an optimisation point of view. It is well known that after a pre-whitening process, the problem can be solved via an optimisation approach on a suitable manifold. We propose an approximate Newton’s method on the unit sphere to solve the one-unit linear nonparametric ICA problem. The local convergence properties are discussed. The performance of the proposed algorithms is investigated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boscolo, R., Pan, H., Roychowdhury, V.P.: Independent component analysis based on nonparametric density estimation. IEEE Transactions on Neural Networks 15(1), 55–65 (2004)

    Article  Google Scholar 

  2. Comon, P.: Independent component analysis, a new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  3. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  4. Gretton, A., Bousquet, O., Smola, A.J., Schölkopf, B.: Measuring statistical dependence with Hilbert-S chmidt norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 63–77. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Chen, A., Bickel, P.J.: Consistent independent component analysis and prewhitening. IEEE Transactions on Signal Processing 53(10), 3625–3632 (2005)

    Article  MathSciNet  Google Scholar 

  6. Hüper, K., Shen, H., Seghouane, A.-K.: Local convergence properties of Fast- ICA and some generalisations. In: Proceedings of the 31st IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2006), pp. V1009–V1012 (2006)

    Google Scholar 

  7. Shen, H., Hüper, K.: Newton-like methods for parallel independent component analysis. To appear in: LSP 2006, Maynooth, Ireland, September 6-8 (2006)

    Google Scholar 

  8. Shen, H., Hüper, K.: Local convergence analysis of FastICA. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 893–900. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Shen, H., Hüper, K., Seghouane, A.-K.: Geometric optimisation and FastICA algorithms. To appear in: MTNS 2006, Kyoto, Japan, July 24-28 (2006)

    Google Scholar 

  10. Smith, S.: Optimization techniques on riemannian manifolds. Hamiltonian and gradientflows, algorithms and control, Fields Institute Communications 3, 113–136 (1994)

    Google Scholar 

  11. Cardoso, J.F.: Blind source separation: statistical principles. Proceedings of the IEEE (90), 2099–2026 (1998)

    Google Scholar 

  12. Miller, E.G., Fisher III, J.W.: ICA using spacings estimates of entropy. The Journal of Machine Learning Research 4(7-8), 1271–1295 (2004)

    Article  MATH  Google Scholar 

  13. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: Advances in Neural Information Processing Systems, vol. 8, pp. 757–763 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, H., Hüper, K., Smola, A.J. (2006). Newton-Like Methods for Nonparametric Independent Component Analysis. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_119

Download citation

  • DOI: https://doi.org/10.1007/11893028_119

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics