Skip to main content

Blind Separation of Digital Signal Sources in Noise Circumstance

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

Abstract

During blind separation, noise exists and effects the work. This paper presents novel techniques for blind separation of instantaneously mixed digital sources in noise circumstance, which is based on characteristics of digital signals. The blind separation and denoising algorithms include two steps. First, one of adaptive blind separation algorithms in existence is used to separate sources, but there still exists noise in the separating signals, and then, the second step is adopted to denoise according to the characteristics of digital signals. In the last simulations, the good performance is illustrated and the algorithm is very excellent.

The work is supported by the National Natural Science Foundation of China for Excellent Youth (Grant 60325310), the Guangdong Province Science Foundation for Program of Research Team (grant 04205783), the National Natural Science Foundation of China (Grant 60505005), the Natural Science Fund of Guangdong Province, China (Grant 05103553), the Specialized Prophasic Basic Research Projects of Ministry of Science and Technology, China (Grant 2005CCA04100).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hyvarinen, A., Oja, E.: Independent component analysis: Algorithms and applications. Neural Networks 38(13), 411–430 (2000)

    Article  Google Scholar 

  2. Stone, J.: Blind source separation using temporal predictability. Neural Computation (13), 1559–1574 (2001)

    Google Scholar 

  3. Bofill, Z.M.: Underdetermined source separation using sparse representations. Signal processing 81, 2353–2362 (2001)

    Article  MATH  Google Scholar 

  4. Xie, S.L., He, Z.S., Fu, Y.L.: A note on stone’s conjecture of blind signal separation. Neural Computation 17(2), 321–330 (2005)

    Article  Google Scholar 

  5. Zhang, J.L., Xie, S.L., He, Z.S.: Separability theory for blind signal separation. Zidonghua Xuebao/Acta. Automatica Sinica 30(3), 337–344 (2004)

    MathSciNet  Google Scholar 

  6. Amari, S., Cichocki, A., Yang, H.: A new learning algorithm for blind signal separation. In: Touretzky, D.S., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 757–763 (1996)

    Google Scholar 

  7. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  8. Pham, D.T.: Mutual information approach to blind separation of stationary sources. IEEE Trans. Inform. Theory 48, 1–12 (2002)

    Google Scholar 

  9. Zhang, J.L., Xie, S.L., He, Z.S.: Separability theory for blind signal separation. Zidonghua Xuebao/Acta. Automatica Sinica 30(3), 337–344 (2004)

    MathSciNet  Google Scholar 

  10. Anand, K., Reddy, V.U.: Maximum likelihood estimation of constellation vectors for blind separation of co-Channel BPSK signals and its performance analysis. IEEE Trans. Signal Processing 45(7), 1736–1741 (1997)

    Article  MATH  Google Scholar 

  11. Pajunen, P.: Blind separation of binary sources with less sensors than sources. In: Processings of 1997 International Conference on neural Networks, Houston, Texas, USA (1997)

    Google Scholar 

  12. Belouchrani, A., Cichocki, A.: An adaptive algorithm for the separation of finite alphabet signals. In: Proceedings of workshop on signal processing and applications 2000, Brisbane, Australia (December 2000)

    Google Scholar 

  13. Li, Y., Cichocki, A., Zhang, L.: Blind separation and extraction of binary sources. Communication and Computer Sciences E86-A(3), 580–590 (2003)

    Google Scholar 

  14. Li, Y., Zhang, L.: New algorithm for blind enhancement of digital images. Control Theory and Applications 20(4), 525–528 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, B., Li, X. (2006). Blind Separation of Digital Signal Sources in Noise Circumstance. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_125

Download citation

  • DOI: https://doi.org/10.1007/11893028_125

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics