Abstract
The task of RBF kernel selection in Relevance Vector Machines (RVM) is considered. RVM exploits a probabilistic Bayesian learning framework offering number of advantages to state-of-the-art Support Vector Machines. In particular RVM effectively avoids determination of regularization coefficient C via evidence maximization. In the paper we show that RBF kernel selection in Bayesian framework requires extension of algorithmic model. In new model integration over posterior probability becomes intractable. Therefore point estimation of posterior probability is used. In RVM evidence value is calculated via Laplace approximation. However, extended model doesn’t allow maximization of posterior probability as dimension of optimization parameters space becomes too high. Hence Laplace approximation can be no more used in new model. We propose a local evidence estimation method which establishes a compromise between accuracy and stability of algorithm. In the paper we first briefly describe maximal evidence principle, present model of kernel algorithms as well as our approximations for evidence estimation, and then give results of experimental evaluation. Both classification and regression cases are considered.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burges, C.J.S.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)
Tipping, M.E.: Sparse Bayesian Learning and the Relevance VectorMachines. Journal of Machine Learning Research 1, 211–244 (2001)
Murphy, P.M., Aha, D.W.: UCI Repository of Machine Learning Databases (Machine Readable Data Repository). Univ. of California, Dept. of Information and Computer Science, Irvine, Calif (1996)
Ayat, N.E., Cheriet, M., Suen, C.Y.: Optimization of SVM Kernels using an Empirical Error Minimization Scheme. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, p. 354. Springer, Heidelberg (2002)
Friedrichs, F., Igel, C.: Evolutionary Tuning of Multiple SVM Parameters. Neurocomputing 64, 107–117 (2005)
Gold, C., Sollich, P.: Model Selection for Support Vector Machine Classification. Neurocomputing 55(1-2), 221–249 (2003)
Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature Selection for Support Vector Machines. In: Proc. of 15th International Conference on Pattern Recognition, vol. 2 (2000)
Chapelle, O., Vapnik, V.: Model Selection for Support Vector Machines. In: Solla, S.A., Leen, T.K., Muller, K.-R. (eds.) Advances in Neural Information Processing Systems, vol. 12. MIT Press, Cambridge (2000)
Kwok, J.T.-Y.: The Evidence Framework Applied to Support Vector Machines. IEEE-NN 11(5) (2000)
Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer, Heidelberg (2001)
Kutin, S., Niyogi, P.: Almost-everywhere algorithmic stability and generalization error. Tech. Rep. TR-2002-03: University of Chicago (2002)
Bousquet, O., Elisseeff, A.: Algorithmic stability and generalization performance. In: Advances in Neural Information Processing Systems, vol. 13 (2001)
Vorontsov, K.V.: Combinatorial substantiation of learning algorithms. Journal of Comp. Maths Math. Phys. 44(11), 1997–2009 (2004), http://www.ccas.ru/frc/papers/voron04jvm-eng.pdf
Rissanen, J.: Modelling by the shortest data description. Automatica 14 (1978)
Van Gestel, T., Suykens, J., Lanckriet, G., Lambrechts, A., De Moor, B., Vandewalle, J.: Bayesian Framework for Least Squares Support Vector Machine Classifiers, Gaussian Processes and Kernel Fisher Discriminant Analysis. Neural Computation 15(5), 1115–1148 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kropotov, D., Vetrov, D., Ptashko, N., Vasiliev, O. (2006). The Use of Stability Principle for Kernel Determination in Relevance Vector Machines. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_81
Download citation
DOI: https://doi.org/10.1007/11893028_81
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46479-2
Online ISBN: 978-3-540-46480-8
eBook Packages: Computer ScienceComputer Science (R0)