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Abstract. The task of RBF kernel selection in Relevance Vector Ma-
chines (RVM) is considered. RVM exploits a probabilistic Bayesian learn-
ing framework offering number of advantages to state-of-the-art Support
Vector Machines. In particular RVM effectively avoids determination of
regularization coefficient C via evidence maximization. In the paper we
show that RBF kernel selection in Bayesian framework requires extension
of algorithmic model. In new model integration over posterior probability
becomes intractable. Therefore point estimation of posterior probability
is used. In RVM evidence value is calculated via Laplace approximation.
However, extended model doesn’t allow maximization of posterior prob-
ability as dimension of optimization parameters space becomes too high.
Hence Laplace approximation can be no more used in new model. We
propose a local evidence estimation method which establishes a compro-
mise between accuracy and stability of algorithm. In the paper we first
briefly describe maximal evidence principle, present model of kernel al-
gorithms as well as our approximations for evidence estimation, and then
give results of experimental evaluation. Both classification and regression
cases are considered.

Keywords: Kernel Selection; Stability of Classifiers; Bayesian Inference;
Relevance Vector Machines.

1 Introduction

Support Vector Machines (SVM) [1] has proved to be the state of the art tech-
nique for solving classification and regression problems. However, successful ap-
plication of SVM needs choosing the particular kernel function as well as reg-
ularization coefficient C (or its analogue). Different values of C and forms of
kernel functions lead to different behaviour of SVM for particular task.

Usually the parameters of kernel function and coefficient C are defined using
cross-validation procedure. This may be too computationally expensive. More-
over the cross-validation estimates of performance, although unbiased [2], may
have large variance due to the limited size of learning sample.
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Several methods for model selection in SVM and SVM-like models were pro-
posed, e.g. in [9,10,6,7,11,8]. The popular way is application of Bayesian learning
framework and maximal evidence principle [3]. Usually some probabilistic inter-
pretation of SVM is provided which is then used for adaptation of maximal
evidence principle [11,8]. However, such probabilistic interpretation requires dif-
ferent approximations and changes in initial SVM training algorithm. Here we
consider an SVM-like algorithm which is constructed directly from probabilistic
model - Relevance Vector Machines (RVM), proposed by Tipping [4]. This ap-
proach doesn’t require setting of coefficient C for restriction of weights’ values
as corresponding regularization coefficients are adjusted automatically during
training. However, the problem of kernel selection still remains. We focus on the
most popular RBF kernel functions K(x, z) = exp(− ||x−z||2

2σ2 ) and selection of
parameter σ - width of Gaussian. We show that application of Bayesian frame-
work for kernel selection requires extension of algorithms model - inclusion of
kernel centers. Integration over posterior probability in the new model becomes
intractable and hence point estimate of posterior probability is used. Laplace
approximation for evidence estimation requires maximization of posterior prob-
ability as well as its Hessian computation. However, in the new model too high
dimension of optimization parameters space and the fact that posterior prob-
ability is multi-modal function make the application of Laplace approximation
impossible. Instead of this we propose a method of local evidence estimation
which leads to a compromise between stability and training accuracy of algo-
rithm.

The paper is organized as follows. Section 2 briefly summarizes ideas of
Bayesian learning, maximal evidence principle and Relevance Vector Machines.
Section 3 presents extended family of algorithms and our kernel selection pro-
cedure. In section 4 experimental results on toy problems and real data are
provided, while the last section gives conclusion and discussion.

2 Relevance Vector Machines

Let Dtrain = {x, t} = {xi, ti}m
i=1 be a training sample where xi = (x1

i , . . . , x
n
i )

are feature vectors in n-dimensional real space and ti are hidden components
either real (for regression) or from {−1, 1} (for classification). Consider the fam-
ily of algorithms h(xnew , w) =

∑m
i=1 wiK(xnew , xi) + w0, where {wi}m

i=0 are
some real parameters or weights. Establish normal prior distribution on weights
P (wi|αi) ∼ N(0, α−1

i ). The set of parameters α determines the model in which
the posterior distribution over weights is looked for. For this model the evidence
(or marginal likelihood) is given by the following equation:

P (t|x, α) =
∫

W (α)
P (t|x, w, α)P (w|α)dw (1)

where P (t|x, w, α) is likelihood of training data (or more exactly likelihood of
hidden components configuration) with respect to the given algorithm, W (α)
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- weights space in the model determined by α. Likelihood function is deter-

mined by expression
m∏

i=1
exp(− ‖ti−h(xi,w)‖2

2λ2 ) in case of regression and calculated

as
m∏

i=1

1
1+exp(−tih(xi,w)) in case of classification.

Using known maximal evidence principle we should select α by maximiz-
ing (1) and then get posterior distribution P (w|t, x, α) ∝ P (t|x, w, α)P (w|α).
For classification problems direct calculation of (1) is impossible due to in-
tractable integral. Tipping used Laplace approximation for its estimation. Func-
tion Lα(w) = log(Qα(w)) = log(P (t|x, w, α)P (w|α)) is approximated by
quadratic function using its Taylor decomposition with respect to w at the point
of maximum wMP . Such approximation can be then integrated yielding

P (t|x, α) ≈ Qα(wMP ) | Σ |1/2, (2)

Σ = (−∇w∇wLα(w) |w=wMP )−1 = (−∇w∇w log(P (t|x, w, α)) − A)−1 (3)

where A = diag(α1, . . . , αm). Note that for regression problems expression (2)
comes to exact equation. Differentiating expression (2) with respect to α and
setting derivatives to zero leads to the following iterative re-estimation equations:

αnew
i =

γi

w2
MP,i

(4)

γi = 1 − αold
i Σii (5)

Here γi is so-called effective weight of ith parameter. It shows how much the
corresponding weight is constrained by regularization term established by prior.
It can be easily shown that γi ∈ [0, 1]. If αi is close to zero, wi is almost un-
constrained and γi is close to one. On the contrary in case of large αi the cor-
responding parameter wi is close to zero and is not much affected by training
information. So its effective weight tends to zero.

The training procedure consists of three iterative steps. At first we search for
the maximum point wMP of Lα(w). Then we estimate Σ according to (3) and
use (4), (5) to get the new α values. The steps are repeated until the process
converges.

In Bayesian framework decision is made by integrating throughout all algo-
rithms within the model with respect to probabilistic measure derived by poste-
rior probability P (w|t, x, α):

P (tnew |xnew, t, x, α) =
∫

W (α)
P (tnew|xnew , w, α)P (w|t, x, α)dw (6)

In RVM posterior distribution is approximated by setting P (w|t, x, α) ≈ δ(w −
wMP ) resulting in the expression:

P (tnew|xnew , t, x, α) = P (tnew |xnew, wMP , α) (7)

It was shown [4] that RVM provides approximately the same quality as SVM.
Moreover RVM appeared to be much more sparse, i.e. the rate of non-zero
weights (relevance vectors) is significantly less than the rate of support vectors.
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3 Kernel Selection

Although maximal evidence principle is fully given in probabilistic terms we
may suggest its another interpretation. Equation (2) can be viewed as a com-
promise between accuracy of algorithm on the training sample (the value of
Qα(wMP )) and its stability with respect to small changes of parameters (ex-
pressed by squared root of inverse Hessian determinant). Then we may formulate
stability principle. The more ”stable” the algorithm is, the better its generaliza-
tion ability becomes. The notion of stability is quite informal. Different defin-
itions of stability and their relation to generalization ability were investigated
[13,14]. Here we understand stability as ability to keep large likelihood (or more
exactly the values of Qα(w)) as long as possible moving from the point of max-
imum in algorithms parameter space. Such view allows to modify the concept of
Bayesian regularization for the cases where its direct application is impossible
or not reasonable.

In straightforward approach kernel parameter σ can be treated as one more
meta-parameter (like α) and evidence maximization procedure can be used for its
determination [11,17]. However, in this way too small values of σ can be chosen.
Indeed, small σ values lead to overfitting and high accuracy on the training
sample (high value of the first term in (2)). At that almost all objects from the
training set have non-zero weights and the influence from the neighboring objects
can be neglected. Small variations of object’s weight just change the height of
the corresponding kernel function, but doesn’t change classification of object
in the kernel center (Fig. 1 (a)). This means that small weight’s modification
cannot change Lα(w) much and the likelihood after modification is still very
high. At the same time the second term in (2) even encourages small σ as the
algorithm becomes more stable with respect to the changes of weights. However,
if we start moving the position of the kernel center, the likelihood of the training
object changes dramatically (Fig.1 (b)). So small σ makes classification unstable
with respect to shifts of the kernel centers.

Actually stability with respect to weight changes is important for selection
of regularization coefficients α. Parameter of kernel function σ is responsi-
ble for stability with respect to kernel shifts. Hence kernel selection requires
inclusion of kernel centers into decision model resulting in hE(xnew , w, z) =∑m

i=1 wiK(xnew , zi) + w0. In the extended model direct calculation of evidence
(1) becomes impossible even for regression case. Laplace approximation for evi-
dence requires additional optimization w.r.t. kernels locations z maximizing

Lσ,α(w, z) = log(P (t|x, w, z, α)P (w|α)P (z)) (8)

Unfortunately optimization of Lσ,α(w, z) with respect to z is too difficult due
to large amount of dimensions as z ∈ Rmn. Moreover unlike h(x, w) function
hE(x, w, z) is non-linear with respect to kernel centers z and hence Lσ,α(w, z)
is multi-modal function. This hardens optimization even more.

In Bayesian framework decision rule is constructed with the aid of equa-
tion (6). But in our case (6) is intractable integral and hence we would pre-
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Fig. 1. The likelihood of the training sample is a product of likelihoods in each train-
ing object x1, x2, x3. In case of small σ values small change of weight still keeps the
likelihood of the corresponding object high enough (a) while small shifts of relevant
point (gaussian center) make likelihood significantly lower (b).

fer using only algorithm which was obtained via maximization of Lσ,α(w, z). If
function Lσ,α(w, z) were unimodal then it could be approximated by its local
behaviour at the maximum point (wMP , zMP ). Now consider the following sit-
uation. Our solution is located in narrow peak at point (wMP , zMP ) but there
is a good stable algorithm somewhere else within the model. The evidence of ob-
tained answer will be high, but the generalization ability of this single algorithm
is poor (see fig. 2). Exact evidence calculation makes sense in case when we are
able to make integration (6). However, we can use only point estimate (7). In sta-
bility approach only local characteristics of point taken as final solution should
be considered. Such characteristics are the value of function Lσ,α(w, z) and its
derivatives which represent instability measure. The analogies with Bayesian
framework can be used to unite these values into one equation.

Optimization of kernel locations is very difficult and time consuming task.
Moreover, our experiments show that such optimization gives nearly no profit in
accuracy while training time increases significantly. So we propose keeping kernel
centers in training objects estimating at the same time algorithm’s stability with
respect to hypothetical kernel shifts. Then wMP can be treated as constant
which does not depend on z. Assuming that there are no prior constrains on
centers location establish improper uniform prior P (z) = const.

Denote Ai the stability of P (t|x, wMP , z) with respect to kernel located in
zi. We assume that it may be decomposed as if the stabilities with respect to
different coordinates were independent

Ai =
n∏

j=1

Aij
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Fig. 2. Example of model which has large evidence value with quite poor point es-
timate. There is no profit of large evidence value if we use only algorithm with
(w, z) = (wM P , zM P ). At the same time local characteristics of point (wM P , zM P )
such as ∇w,z∇w,zQ(w, z) |(w ,z)=(wMP ,zMP ) penalize the obtained algorithm belong-
ing to the model.

Aij is determined by integrating the approximation of log(P (t|x, wMP , z, α))
with parabolic function using its Taylor decomposition at the point z = x with
respect to zj

i :

Aij =

{
|a|−1, if b ≤ 0
1
2

√
2π
b exp

(
a2

2b

) (
1 − erf

(
|a|√
2b

))
, otherwise

(9)

here

a =
∂ log(P (t|x, wMP , z, α))

∂zj
i

b = −∂2 log(P (t|x, wMP , z, α))
(∂zj

i )2

The sense of equation (9) is shown on figure 3. Estimating algorithm’s stability
in the first place we would like to insure ourselves against accuracy degrade on
the test sample. So f(zj

i ) = log P (t|x, wMP , z, α) is approximated with negative
parabola or with a line (if second derivative is non-negative) at point zj

i = xj
i

and decreasing tail of approximation is integrated yielding stability measure Aij .
If xj

i were an extremum point of f(zj
i ) then Aij would be proportional to the

result of Laplace approximation taken along xj
i coordinate.

For uniting stability and accuracy in one expression we should consider the
weight of each kernel. Actually if the weight of kernel is close to zero its stability
doesn’t play important role. Taking into consideration the effective weights (5)
of each kernel γi which vary from 0 to 1 we get the expression for total stability
of likelihood with respect to all kernels

Z =
m∏

i=1

Aγi
i =

m∏

i=1

(
n∏

j=1

Aij)γi (10)
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Fig. 3. Algorithm stability (grey area) is expressed as integration of tail in Laplace
approximation of Q(w, z) for each zj

i

Multiplying Z and the value of likelihood at the point wMP we get kernel
validity value

KV = P (t|x, wMP , z, α)Z (11)

The kernel function which corresponds to the largest validity value is supposed
to be the best one for the particular task.

Thus the procedure for selection of width parameter σ in gaussian parametric
family of kernel functions becomes the following:

1. Choose some σ value.
2. Put z = x.
3. Train RVM algorithm with selected σ.
4. At the point wMP calculate kernel validity (11), where components Aij are

taken from (9), while effective weights γi are determined by (5).

The σ value corresponding to the largest validity value is considered to be the
optimal one.

4 Experimental Results

We compare kernel selection performance of kernel validity index vs. cross-
validation using 9 classification and 5 regression problems from UCI repository.
For each task we randomly split 20 times the data into train (33%) and test (67%)
sets and use RVM with kernels of different width (σ = 0.01, 0.1, 0.3, 1, 2, 3, 4, 5,
7, 10). Test errors and sums of squared deviations corresponded to the kernels
with maximum validity and with best cross-validation estimate averaged by 20
pairs of train/test tables together with their standard deviations are shown in
tables 1 and 2. Columns RVM CV and SVM CV show the averaged test error
with kernel selection according to 5-fold cross-validation for RVM and SVM.
RVM MV shows averaged test errors corresponded to maximum kernel validity
index. Column SVM MV shows how SVM performs with the same kernels as
in RVM MV. This column helps us to check whether the optimal kernel width
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is defined only by the problem itself or also by the training algorithm. Finally
MinTestError column contains minimal possible test error.

The results from table 1 were rated in the following way. The least test error
was given one point, while the second two points, etc. The worst result was
assigned four points. Total results are shown in the last line of the table.

Experimental results show that RVM and SVM have competitive performance
although RVM generated 5-8 times less kernels than the corresponding SVM.
Also our kernel validity measure works at least not worse than cross-validation
alternative for classification and slightly worse for regression. But our approach
has two advantages. The algorithm should be trained only once thus requesting
significantly less time for training. Another good property of the proposed in-
dex is its unimodality. Unlike cross-validation measure which has lots of local
extrema KV (σ) may be optimized using gradient or quasi-gradient methods.
Very interesting effect is poor quality of SVM performance using the kernels
which were considered to be the best (in sense of our validity measure) for
RVM. This proves that kernel validity depends much on the method of training
vector machine classifier. Also we should mention that neither cross-validation
nor maximum validity index lead to minimum possible test error. This can be
connected both with peculiarities of training sample and with the fact that test
sample may be biased with respect to the universal set.

Table 1. Experimental results for classification problems (error rates and standard
deviations)

Sample Name RVM CV SVM CV RVM MV SVM MV MinTestError
AUSTRALIAN 15.5 ± 1.2 16.5 ± 1.9 18.6 ± 4.35 21 ± 3.6 13.4

BUPA 41 ± 0.4 37.5 ± 2.5 39 ± 3.6 37.6 ± 3.8 31
CLEVELAND 18.6 ± 1.8 21 ± 2.7 20 ± 3.5 28 ± 5.6 17

CREDIT 17.3 ± 2.7 18 ± 1.6 16.9 ± 2.4 20 ± 2.9 14.5
HEPATITIS 43 ± 5.6 39.17 ± 3.8 39 ± 3.9 39.21 ± 4.6 36
HUNGARY 22 ± 4.4 20 ± 2.3 24 ± 5.3 26 ± 4 18

LONG BEACH 25.25 ± 0.5 25.18 ± 0.9 27 ± 4.7 26 ± 4.6 24.5
PIMA 34 ± 2.7 30 ± 2 27 ± 2.5 29.6 ± 2.9 23

SWITZERLAND 6.4 ± 1.6 8 ± 1.8 7 ± 2 7.6 ± 2.3 5.8
Total 21 20 20 29

Table 2. Experimental results for regression problems (sum of squared deviations). The
last column presents a ratio of quality deterioration with respect to minimal possible
test error for MV and CV given in percents.

Sample Name # Tr. obj. RVM CV RVM MV MinTestError
BOSTON 100 3.7694 ± 0.5821 3.909 ± 0.5488 3.4351 141%

PYRIMIDINES 52 0.0652 ± 0.0112 0.0682 ± 0.0096 0.0587 146%
SERVO 117 0.9784 ± 0.0765 1.0351 ± 0.0544 0.8973 169%

TRIAZINES 131 0.1154 ± 0.0076 0.1137 ± 0.0073 0.1085 75%
WISCONSIN 33 18.2432 ± 2.1945 19.2693 ± 1.3362 17.0904 189%
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5 Discussion and Conclusion

Unlike structural risk minimization [2] which restricts too flexible classifiers and
minimum description length approach [16] which penalizes algorithmic complex-
ity, the concept of Bayesian regularization (and its modification described above)
tries to establish the model where the solution is stable with respect to changes
of classifier parameters. We decided to move from probabilistic approach and
concentrate directly on idea of stability rather than on applying maximal likeli-
hood principle to models (i.e. maximizing evidence). The proposed characteristic
of kernel validity does not show how good is the kernel for particular task. It
only can serve for estimation of kernel utility in case of fixed training procedure
(in our case this is RVM). This happens because we do not estimate the validity
of whole model (as we use only one classifier with w = wMP ) but consider only
local stability of Qα(w) at point wMP .

The idea to take into consideration both the model of algorithms and partic-
ular training procedure (our ability to find good algorithm inside the model) for
estimation of algorithm’s quality is not novel. For example, Vapnik proposed so-
called effective VC dimension [2]. Unlike traditional VC dimension new notion
suggests consideration of training sample and considers only those algorithms
which can be obtained inside the model using particular training sample. As a
result error bounds become more accurate. Popular boosting and bagging tech-
niques are said to increase both training accuracy and generalization ability of
algorithms. These methods make algorithm’s model sufficiently more complex.
Nevertheless, effective way of choosing particular algorithm inside the extended
model avoids drawbacks of such complication. Explicit consideration of training
procedure together with model’s properties led to new theory of algorithms qual-
ity estimates, based on combinatorial approach [15]. In our case we are not able
to consider all possible algorithms inside the model (to integrate over posterior
probability P (w|t, x, α)). However, consideration of local stability of Q(w, z)
at point wMP (our ability to find good algorithm inside the model) gives us
appropriate technique for kernel selection task.

This method seems to be quite general and probably could be applied to other
complex machine learning algorithms for tuning their model parameters.
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