Abstract
A Spectrum-based Support Vector Algorithm (SSVA) to resolve semi-supervised classification for relational data is presented in this paper. SSVA extracts data representatives and groups them with spectral analysis. Label assignment is done according to affinities between data and data representatives. The Kernel function encoded in SSVA is defined to rear to relational version and parameterized by supervisory information. Another point is the self-tuning of penalty coefficient and Kernel scale parameter to eliminate the need of searching parameter spaces. Experiments on real datasets demonstrate the performance and efficiency of SSVA.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Džeroski, S.: Multi-Relational Data Mining: An Introduction. ACM SIGKDD Explorations Newsletter 5(1) (2003)
Ben-Hur, A., Horn, D., Siegelmann, H.T.: Support Vector Clustering. Journal of Machine Learning Research, 125–137 (2001)
Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems. MIT Press, Cambridge (2002)
Xing, E., Ng, A., Jordan, M.: Distance Metric Learning, with Application to Clustering with Side-information. In: Advances in Neural Information Processing Systems, vol. 15, pp. 505–512 (2003)
Polito, M., Perona, P.: Grouping and Dimensionality Reduction by Locally Linear Embedding. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14. MIT Press, Cambridge (2002)
Schlkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)
Haussler, D.: Convolution Kernels on Discrete Structures. Technical report, Department of Computer Science, University of California, Santa Cruz (1999)
Renders, J.: Kernel Methods in Natural Language Processing. Learning Methods for Text Understanding and Mining, Tutorial, France (2004)
http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html
Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89(1-2), 31–71 (1997)
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/mutagenesis.html
Bloedorn, E., Michalski, R.: Data driven constructive induction. IEEE Intelligent Systems 13(2), 30–37 (1998)
Gaertner, T., Flach, P., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: Sammut, C. (ed.) ICML 2002. Morgan Kaufmann, San Francisco (2002)
Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Trans. on Neural Networks 13(3), 780–784 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ping, L., Zhe, W., Chunguang, Z. (2006). A Spectrum-Based Support Vector Algorithm for Relational Data Semi-supervised Classification. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_89
Download citation
DOI: https://doi.org/10.1007/11893028_89
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46479-2
Online ISBN: 978-3-540-46480-8
eBook Packages: Computer ScienceComputer Science (R0)