Skip to main content

A New Approach to Load Forecasting: Using Semi-parametric Method and Neural Networks

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

Abstract

A new approach to electrical load forecasting is investigated. The method is based on the semi-parametric spectral estimation method that is used to decompose a signal into a harmonic linear signal model and a non-linear part. A neural network is then used to predict the non-linear part. The final predicted signal is then found by adding the neural network predicted non-linear part and the linear part. The performance of the proposed method seems to be more robust than using only the raw load data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bitzer, B., Rösser, F.: Intelligent Load Forecasting for Electrical Power System on Crete. In: UPEC 1997 Universities Power Engineering Conference, UMIST-University of Manchester (1997)

    Google Scholar 

  2. Zivanovic, R.: Analysis of Recorded Transients on 765kV Lines with Shunt Reactors. In: Power Tech2005 Conference, St. Petersburg, Russia (2005)

    Google Scholar 

  3. Zivanovic, R., Schegner, P., Seifert, O., Pilz, G.: Identification of the Resonant-Grounded System Parameters by Evaluating Fault Measurement Records. IEEE Transactions on Power Delivery 19, 1085–1090 (2004)

    Article  Google Scholar 

  4. Jordaan, J., Zivanovic, R.: Time-varying Phasor Estimation in Power Systems by Using a Non-quadratic Criterium. Transactions of the South African Institute of Electrical Engineers (SAIEE) 95, 35–41 (2004), ERRATA 94(3), 171–172 (September 2004)

    Google Scholar 

  5. Gorry, P.: General Least-Squares Smoothing and Differentiation by the Convolution (Savitzky-Golay) Method. Analytical Chemistry 62, 570–573 (1990)

    Article  Google Scholar 

  6. Bialkowski, S.: Generalized Digital Smoothing Filters Made Easy by Matrix Calculations. Analytical Chemistry 61, 1308–1310 (1989)

    Article  Google Scholar 

  7. Draper, N., Smith, H.: Applied Regression Analysis, 2nd edn. John Wiley & Sons, Chichester (1981)

    MATH  Google Scholar 

  8. Tibshirani, R.: Regression Shrinkage and Selection via the Lasso. Journal of the Royal Society. Series B (Methodological) 58, 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Casar-Corredera, J., Alcásar-Fernándes, J., Hernándes-Gómez, L.: On 2-D Prony Methods, CH2118-8/85/0000-0796 $1.00, pp. 796–799. IEEE, Los Alamitos (1985)

    Google Scholar 

  10. Zivanovic, R., Schegner, P.: Pre-filtering Improves Prony Analysis of Disturbance Records. In: Eighth International Conference on Developments in Power System Protection, Amsterdam, The Netherlands (2004)

    Google Scholar 

  11. Wasserman, P.: Advanced Methods in Neural Computing. Van Nostrand Reinhold, New York (1993)

    MATH  Google Scholar 

  12. Mathworks: MATLAB Documentation - Neural Network Toolbox. Version 6.5.0.180913a Release 13 edn. Mathworks Inc., Natick, MA (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ukil, A., Jordaan, J. (2006). A New Approach to Load Forecasting: Using Semi-parametric Method and Neural Networks. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_107

Download citation

  • DOI: https://doi.org/10.1007/11893257_107

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics