Skip to main content

Prediction of Construction Litigation Outcome Using a Split-Step PSO Algorithm

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

  • 1378 Accesses

Abstract

The nature of construction claims is highly complicated and the cost involved is high. It will be advantageous if the parties to a dispute may know with some certainty how the case would be resolved if it were taken to court. The recent advancements in artificial neural networks may render a cost-effective technique to help to predict the outcome of construction claims, on the basis of characteristics of cases and the corresponding past court decisions. In this paper, a split-step particle swarm optimization (PSO) model is applied to train perceptrons in order to predict the outcome of construction claims in Hong Kong. It combines the advantages of global search capability of PSO algorithm in the first step and the local convergence of back-propagation algorithm in the second step. It is shown that, through a real application case, its performance is much better than the benchmark backward propagation algorithm and the conventional PSO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chau, K.W.: Resolving Construction Disputes by Mediation: Hong Kong Experience. Journal of Management in Engineering, ASCE 8(4), 384–393 (1992)

    MathSciNet  Google Scholar 

  2. Chau, K.W.: A Review on the Integration of Artificial Intelligence into Coastal Modeling. Journal of Environmental Management 80(1), 47–57 (2006)

    Article  MathSciNet  Google Scholar 

  3. Chau, K.W., Cheng, C.T.: Real-Time Prediction of Water Stage with Artificial Neural Network Approach. In: McKay, B., Slaney, J.K. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2557, pp. 715–715. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Cheng, C.T., Chau, K.W., Sun, Y.G., Lin, J.Y.: Long-term Prediction of Discharges in Manwan Reservoir using Artificial Neural Network Models. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3498, pp. 1040–1045. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Cheng, C.T., Lin, J.Y., Sun, Y.G., Chau, K.W.: Long-Term Prediction of Discharges in Manwan Hydropower using Adaptive-Network-Based Fuzzy Inference Systems Models. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1152–1161. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Wu, C.L., Chau, K.W.: Evaluation of Several Algorithms in Forecasting Flood. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 111–116. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Rumelhart, D.E., Widrow, B., Lehr, M.A.: The Basic Ideas in Neural Networks. Communications of the ACM 37(3), 87–92 (1994)

    Article  Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, pp. 1942–1948 (1995)

    Google Scholar 

  9. Chau, K.W.: River Stage Forecasting with Particle Swarm Optimization. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 1166–1173. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Chau, K.W.: Rainfall-Runoff Correlation with Particle Swarm Optimization Algorithm. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 970–975. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Chau, K.W.: Predicting Construction Litigation Outcome using Particle Swarm Optimization. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 571–578. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Arditi, D., Oksay, F.E., Tokdemir, O.B.: Predicting the Outcome of Construction Litigation Using Neural Networks. Computer-Aided Civil and Infrastructure Engineering 13(2), 75–81 (1998)

    Article  Google Scholar 

  13. Kennedy, J.: The Particle Swarm: Social Adaptation of Knowledge. In: Proceedings of the 1997 International Conference on Evolutionary Computation, Indianapolis, pp. 303–308 (1997)

    Google Scholar 

  14. Clerc, M., Kennedy, J.: The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chau, Kw. (2006). Prediction of Construction Litigation Outcome Using a Split-Step PSO Algorithm. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_120

Download citation

  • DOI: https://doi.org/10.1007/11893257_120

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics