Abstract
In this paper, we propose a novel learning method for face detection using discriminative feature selection. The main deficiency of the boosting algorithm for face detection is its long training time. Through statistical learning theory, our discriminative feature selection method can make the training process for face detection much faster than the boosting algorithm without degrading the generalization performance. Being different from the boosting algorithm which works in an iterative learning way, our method can directly solve the learning problem of face detection. Our method is a novel ensemble learning method for combining multiple weak classifiers. The most discriminative component classifiers are selected for the ensemble. Our experiments show that the proposed discriminative feature selection method is more efficient than the boosting algorithm for face detection.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fan, Z.G., Lu, B.L.: Fast recognition of multi-view faces with feature selection. In: Proc. ICCV 2005, vol. 1, pp. 76–81 (2005)
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(3), 389–422 (2002)
Heisele, B., Serre, T., Prentice, S., Poggio, T.: Hierarchical classification and feature reduction for fast face detection with support vector machine. Pattern Recognition 36(9), 2007–2017 (2003)
Li, S.Z., Zhang, Z.: Floatboost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)
Lienhart, R., Maydt, J.: An extended set of haar-like features for papid object detection. In: Proc. ICIP 2002, vol. 1, pp. 900–903 (2002)
Lin, Y., Liu, T.: Robust face detection with multi-class boosting. In: Proc. CVPR 2005, vol. 1, pp. 680–687 (2005)
Liu, C., Shum, H.: Kullback-leibler boosting. In: Proc. CVPR 2003, vol. 1, pp. 587–594 (2003)
Osadchy, R., Miller, M., LeCun, Y.: Synergistic face detection and pose estimation with energy-based model. In: Advances in Neural Information Processing Systems (NIPS 2004), MIT Press, Cambridge (2005)
Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application to face detection. In: Proc. CVPR 1997, vol. 1, pp. 130–136 (1997)
Papageorgiou, C., Poggio, T.: A trainable system for object detection. International Journal of Computer Vision 38(1), 15–33 (2000)
Romdhani, S., Torr, P., Scholkopf, B., Blake, A.: Computationally efficient face detection. In: Proc. ICCV 2001, vol. 2, pp. 695–700 (2001)
Rowley, H., Kanade, T.: Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)
Schneiderman, H., Kanade, T.: Object detection using the statistics of patrs. International Journal of Computer Vision 56(3), 151–177 (2004)
Sun, J., Rehg, J.M., Bobick, A.: Automatic cascade training with perturbation bias. In: Proc. CVPR 2004, vol. 2, pp. 276–283 (2004)
Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 39–51 (1998)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2000)
Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)
Wu, B., Ai, H., Huang, C., Lao, S.: Fast rotation invariant multi-view face detection based on real adaboost. In: Proc. FGR 2004, vol. 1, pp. 79–84 (2004)
Wu, J., Rehg, J.M., Mullin, M.D.: Learning a rare event detection cascade by direct feature selection. In: Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2004)
Yang, M.H., Roth, D., Ahuja, N.: A snow-based face detector. In: Advances in Neural Information Processing Systems 12
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fan, ZG., Lu, BL. (2006). Fast Learning for Statistical Face Detection. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_21
Download citation
DOI: https://doi.org/10.1007/11893257_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46481-5
Online ISBN: 978-3-540-46482-2
eBook Packages: Computer ScienceComputer Science (R0)