Skip to main content

Fast Learning for Statistical Face Detection

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

Abstract

In this paper, we propose a novel learning method for face detection using discriminative feature selection. The main deficiency of the boosting algorithm for face detection is its long training time. Through statistical learning theory, our discriminative feature selection method can make the training process for face detection much faster than the boosting algorithm without degrading the generalization performance. Being different from the boosting algorithm which works in an iterative learning way, our method can directly solve the learning problem of face detection. Our method is a novel ensemble learning method for combining multiple weak classifiers. The most discriminative component classifiers are selected for the ensemble. Our experiments show that the proposed discriminative feature selection method is more efficient than the boosting algorithm for face detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fan, Z.G., Lu, B.L.: Fast recognition of multi-view faces with feature selection. In: Proc. ICCV 2005, vol. 1, pp. 76–81 (2005)

    Google Scholar 

  2. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(3), 389–422 (2002)

    Article  MATH  Google Scholar 

  3. Heisele, B., Serre, T., Prentice, S., Poggio, T.: Hierarchical classification and feature reduction for fast face detection with support vector machine. Pattern Recognition 36(9), 2007–2017 (2003)

    Article  MATH  Google Scholar 

  4. Li, S.Z., Zhang, Z.: Floatboost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)

    Article  Google Scholar 

  5. Lienhart, R., Maydt, J.: An extended set of haar-like features for papid object detection. In: Proc. ICIP 2002, vol. 1, pp. 900–903 (2002)

    Google Scholar 

  6. Lin, Y., Liu, T.: Robust face detection with multi-class boosting. In: Proc. CVPR 2005, vol. 1, pp. 680–687 (2005)

    Google Scholar 

  7. Liu, C., Shum, H.: Kullback-leibler boosting. In: Proc. CVPR 2003, vol. 1, pp. 587–594 (2003)

    Google Scholar 

  8. Osadchy, R., Miller, M., LeCun, Y.: Synergistic face detection and pose estimation with energy-based model. In: Advances in Neural Information Processing Systems (NIPS 2004), MIT Press, Cambridge (2005)

    Google Scholar 

  9. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application to face detection. In: Proc. CVPR 1997, vol. 1, pp. 130–136 (1997)

    Google Scholar 

  10. Papageorgiou, C., Poggio, T.: A trainable system for object detection. International Journal of Computer Vision 38(1), 15–33 (2000)

    Article  MATH  Google Scholar 

  11. Romdhani, S., Torr, P., Scholkopf, B., Blake, A.: Computationally efficient face detection. In: Proc. ICCV 2001, vol. 2, pp. 695–700 (2001)

    Google Scholar 

  12. Rowley, H., Kanade, T.: Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)

    Article  Google Scholar 

  13. Schneiderman, H., Kanade, T.: Object detection using the statistics of patrs. International Journal of Computer Vision 56(3), 151–177 (2004)

    Article  Google Scholar 

  14. Sun, J., Rehg, J.M., Bobick, A.: Automatic cascade training with perturbation bias. In: Proc. CVPR 2004, vol. 2, pp. 276–283 (2004)

    Google Scholar 

  15. Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 39–51 (1998)

    Article  Google Scholar 

  16. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2000)

    MATH  Google Scholar 

  17. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  18. Wu, B., Ai, H., Huang, C., Lao, S.: Fast rotation invariant multi-view face detection based on real adaboost. In: Proc. FGR 2004, vol. 1, pp. 79–84 (2004)

    Google Scholar 

  19. Wu, J., Rehg, J.M., Mullin, M.D.: Learning a rare event detection cascade by direct feature selection. In: Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2004)

    Google Scholar 

  20. Yang, M.H., Roth, D., Ahuja, N.: A snow-based face detector. In: Advances in Neural Information Processing Systems 12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, ZG., Lu, BL. (2006). Fast Learning for Statistical Face Detection. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_21

Download citation

  • DOI: https://doi.org/10.1007/11893257_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics