Skip to main content

An Efficient Unsupervised Mixture Model for Image Segmentation

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

  • 1384 Accesses

Abstract

In this paper, we present an efficient unsupervised mixture model image segmentation method. The idea of this method is that individual image region classes are modeled as mixtures of fuzzy subclasses of mixture distributions, and classification is performed based on the Expectation-Maximization algorithm. To overcome the difficulty of classical mixture model method for noisy image segmentation, spatial contextual information should be taken into account. In particular, the proposed approach based on Markov Random Field was shown to provide more accurate classification of images than traditional Expectation-Maximization algorithm and traditional Markov Random Field image segmentation techniques. The effectiveness of the proposed method is illustrated with synthetic and real images data. The experiments results have shown that the proposed method can achieve more robust segmentation for noisy images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McLachlan, G., Peel, D.: Finite mixture models. John Wiley, Chichester (2000)

    Book  MATH  Google Scholar 

  2. Santago, P., Gage, H.D.: Statistical models of partial volume effect. IEEE Trans. Image Process 4, 1531–1540 (1995)

    Article  Google Scholar 

  3. Penny, W.: Bayesian approaches to Gaussian mixture modeling. IEEE Trans. Pattern Anal. Mach. 20(11), 1133–1142 (1998)

    Article  Google Scholar 

  4. Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process 7(7), 1014–1028 (1998)

    Article  Google Scholar 

  5. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. 24(3), 381–396 (2002)

    Article  Google Scholar 

  6. Blekas, K., Likas, A., Galatsanos, N.P.: A Spatially Constrained Mixture Model for Image Segmentation. IEEE Trans. Neural Networks 16(2), 494–498 (2005)

    Article  Google Scholar 

  7. Gath, I., Geva, A.B.: Fuzzy clustering for the estimation of the parameters of the components of mixtures of normal distributions. Pattern Recognition Letters 9(3) (1989)

    Google Scholar 

  8. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum-likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  10. Li, S.Z.: Markov Random Field Modeling in Computer Vision. Springer, New York (2001)

    Google Scholar 

  11. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imag. 20, 45–57 (2001)

    Article  Google Scholar 

  12. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  13. Besag, J.: Towards Bayesian image analysis. Journal of Applied Statistics 16, 395–407 (1989)

    Article  Google Scholar 

  14. Zerubia, J., Chellappa, R.: Mean field annealing using compound Gauss Markov random fields. IEEE Transactions on Neural Networks 4(4), 703–709 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, P., Zheng, X., Yu, G., Weng, Z., Cai, S.Z. (2006). An Efficient Unsupervised Mixture Model for Image Segmentation. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_42

Download citation

  • DOI: https://doi.org/10.1007/11893257_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics