Skip to main content

SuperResolution Image Reconstruction Using a Hybrid Bayesian Approach

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

  • 1385 Accesses

Abstract

There are increasing demands for high-resolution (HR) images in various applications. Image superresolution (SR) reconstruction refers to methods that increase image spatial resolution by fusing information from either a sequence of temporal adjacent images or multi-source images from different sensors. In the paper we propose a hybrid Bayesian method for image reconstruction, which firstly estimates the unknown point spread function(PSF) and an approximation for the original ideal image, and then sets up the HMRF image prior model and assesses its tuning parameter using maximum likelihood estimator, finally computes the regularized solution automatically. Hybrid Bayesian estimates computed on actual satellite images and video sequence show dramatic visual and quantitative improvements in comparison with the bilinear interpolation result, the projection onto convex sets (POCS) estimate and Maximum A Posteriori (MAP) estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Park, S.C., Park, M.K., Kang, M.G.: Super-Resolution Image Reconstruction: A Technical Overview. IEEE Signal Processing Magazine 5, 21–36 (2003)

    Article  Google Scholar 

  2. Tsai, R.Y., Huang, T.S.: Multiframe image restoration and registration. In: Huang, T.S. (ed.) Advances in computer vision and image processing, pp. 317–339. JAI Press (1984)

    Google Scholar 

  3. Patti, A.J., Sezan, M.I., Tekalp, A.M.: Superresolution Video Reconstruction with Arbitrary Sampling Lattices and Nonzereo Aperture Time. IEEE Trans. Image Processing 8, 1064–(1997)

    Article  Google Scholar 

  4. Patti, A.J., Altunbasak, Y.: Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants. IEEE Trans. Image Processing 1, 179–186 (2001)

    Article  Google Scholar 

  5. Schulz, R.R., Stevenson, R.L.: Extraction of High-Resolution Frames from Video Sequences. IEEE Trans. Image Processing 6, 996–1011 (1996)

    Article  Google Scholar 

  6. Hardie, R.C., Barnard, K.J., Armstrong, E.E.: Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Trans. Image Processing 12, 1621–1633 (1997)

    Article  Google Scholar 

  7. Jalobeanu, A., Blanc-Féraud, L., et al.: An Adaptive Gaussian Model for Satellite Image deblurring. IEEE Trans. Image Processing 4, 613–621 (2004)

    Article  Google Scholar 

  8. Carasso, A.S.: THE APEX Method in Image Sharpening and the use of low exponent Lévy Stable Laws. SIAM J. Appl. Math. 2, 593–618 (2002)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, T., Zhang, Y., Zhang, Y.S. (2006). SuperResolution Image Reconstruction Using a Hybrid Bayesian Approach. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_46

Download citation

  • DOI: https://doi.org/10.1007/11893257_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics