Abstract
The inference and optimization in sparse graphs with real variables is studied using methods of statistical mechanics. Efficient distributed algorithms for the resource allocation problem are devised. Numerical simulations show excellent performance and full agreement with the theoretical results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jordan, M.I. (ed.): Learning in Graphical Models. MIT Press, Cambridge (1999)
Opper, M., Saad, D.: Advanced Mean Field Methods. MIT Press, Cambridge (2001)
MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms, CUP UK (2003)
Skantzos, N.S., Castillo, I.P., Hatchett, J.P.L.: arXiv:cond-mat/0508609 (2005)
Peterson, L., Davie, B.S.: Computer Networks: A Systems Approach. Academic Press, San Diego (2000)
Shenker, S., Clark, D., Estrin, D., Herzog, S.: ACM Computer Comm. Review 26, 19 (1996)
Bertsekas, D.: Linear Network Optimzation. MIT Press, Cambridge (1991)
Wong, K.Y.M., Saad, D.: arXiv:cond-mat/0509794 (2005)
Mézard, M., Parisi, P., Virasoro, M.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)
Kelly, F.P.: Euro. Trans. on Telecommunications & Related Technologies 8, 33 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wong, K.Y.M., Yeung, C.H., Saad, D. (2006). Message-Passing for Inference and Optimization of Real Variables on Sparse Graphs. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_84
Download citation
DOI: https://doi.org/10.1007/11893257_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46481-5
Online ISBN: 978-3-540-46482-2
eBook Packages: Computer ScienceComputer Science (R0)