Skip to main content

Towards Hardware Acceleration of Neuroevolution for Multimedia Processing Applications on Mobile Devices

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4234))

Included in the following conference series:

  • 2367 Accesses

Abstract

This paper addresses the problem of accelerating large artificial neural networks (ANN), whose topology and weights can evolve via the use of a genetic algorithm. The proposed digital hardware architecture is capable of processing any evolved network topology, whilst at the same time providing a good trade off between throughput, area and power consumption. The latter is vital for a longer battery life on mobile devices. The architecture uses multiple parallel arithmetic units in each processing element (PE). Memory partitioning and data caching are used to minimise the effects of PE pipeline stalling. A first order minimax polynomial approximation scheme, tuned via a genetic algorithm, is used for the activation function generator. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Widrow, B., Rumelhart, D.E., Lehr, M.A.: Neural Networks: Applications in Industry, Business and Science. Communications of the ACM 37, 93–105 (1994)

    Article  Google Scholar 

  2. Fogel, D.B., Fogel, L.J., Porto, V.W.: Evolving neural networks. Biol. Cybern. 63, 487–493 (1990)

    Article  Google Scholar 

  3. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10, 99–127 (2002)

    Article  Google Scholar 

  4. Omondi, A.R.: Neurocomputers: A Dead End? International Journal of Neural Systems 10, 475–481 (2000)

    Google Scholar 

  5. Reyneri, L.: Implementation issues of neuro-fuzzy hardware: going toward hw/sw codesign. IEEE Transactions on Neural Networks 14, 176–194 (2003)

    Article  Google Scholar 

  6. Kung, S., Hwang, J.: A Unified Systolic Architecture for Artifical Neural Networks. Journal of Parallel and Distributed Computing 6, 358–387 (1989)

    Article  Google Scholar 

  7. Stanley, K., Bryant, B., Miikkulainen, R.: Real-time neuroevolution in the NERO video game. IEEE Transactions on Evolutionary Computation 9, 653–668 (2005)

    Article  Google Scholar 

  8. Gaines, B.: Stochastic Computing Systems, Advances in Information Systems Science. Plenum Press, New York (1969)

    Google Scholar 

  9. Brown, B.D., Card, H.C.: Stochastic Neural Computation I: Computational Elements. IEEE Transactions on Neural Networks 50, 891–905 (2001)

    MathSciNet  Google Scholar 

  10. Holt, J., Hwang, J.: Finite Precision Error Analysis of Neural Network Hardware Implementations. IEEE Transactions on Computers 42, 280–291 (1993)

    Google Scholar 

  11. Koren, I.: Computer Arithmetic Algorithms, 2nd edn. A K Peters Ltd (2001)

    Google Scholar 

  12. Larkin, D., Kinane, A., Muresan, V., O’Connor, N.: An Efficient Hardware Architecture for a Neural Network Activation Function Generator. In: International Symposium on Neural Networks, Chengdu, China (2006)

    Google Scholar 

  13. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 3rd edn. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Larkin, D., Kinane, A., O’Connor, N. (2006). Towards Hardware Acceleration of Neuroevolution for Multimedia Processing Applications on Mobile Devices. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_130

Download citation

  • DOI: https://doi.org/10.1007/11893295_130

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46484-6

  • Online ISBN: 978-3-540-46485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics