Skip to main content

Visual Interactive Subgroup Discovery with Numerical Properties of Interest

  • Conference paper
Discovery Science (DS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4265))

Included in the following conference series:

Abstract

We propose an approach to subgroup discovery using distribution rules (a kind of association rules with a probability distribution on the consequent) for numerical properties of interest. The objective interest of the subgroups is measured through statistical goodness of fit tests. Their subjective interest can be assessed by the data analyst through a visual interactive subgroup browsing procedure.

Supported by POSI/SRI/40949/2000/ Modal Project (Fundação Ciência e Tecnologia), FEDER e Programa de Financiamento Plurianual de Unidades de I & D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jorge, A.M., Poças, J., Azevedo, P.J.: Post-processing operators for browsing large sets of association rules. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 414–421. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Jorge, A.M., Azevedo, P.J., Pereira, F.: Distribution rules with numeric attributes of interest. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 247–258. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Klősgen, W.: Explora: A multipattern and multistrategy discovery assistant. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park (1996)

    Google Scholar 

  4. Liu, B., Hsu, W., Ma, Y.: Pruning and summarizing the discovered associations. In: KDD 1999: Proceedings of the Fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 125–134. ACM Press, New York (1999)

    Chapter  Google Scholar 

  5. Ribeiro, R., Torgo, L.: Predicting harmful algae blooms. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 308–312. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jorge, A.M., Pereira, F., Azevedo, P.J. (2006). Visual Interactive Subgroup Discovery with Numerical Properties of Interest. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds) Discovery Science. DS 2006. Lecture Notes in Computer Science(), vol 4265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893318_31

Download citation

  • DOI: https://doi.org/10.1007/11893318_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46491-4

  • Online ISBN: 978-3-540-46493-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics