Abstract
Side-channel attacks are a serious threat to implementations of cryptographic algorithms. Secret information is recovered based on power consumption, electromagnetic emanations or any other form of physical information leakage. Template attacks are probabilistic side-channel attacks, which assume a Gaussian noise model. Using the maximum likelihood principle enables us to reveal (part of) the secret for each set of recordings (i.e., leakage trace). In practice, however, the major concerns are (i) how to select the points of interest of the traces, (ii) how to choose the minimal distance between these points, and (iii) how many points of interest are needed for attacking. So far, only heuristics were provided. In this work, we propose to perform template attacks in the principal subspace of the traces. This new type of attack addresses all practical issues in principled way and automatically. The approach is validated by attacking stream ciphers such as RC4. We also report analysis results of template style attacks against an FPGA implementation of AES Rijndael. Roughly, the template attack we carried out requires five time less encrypted messages than the best reported correlation attack against similar block cipher implementations.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)
Efron, B., Tibshirani, R.J.: An introduction to the Bootstrap. Chapman and Hall, London (1993)
Fukunaga, K.: Introduction to Statistical Pattern Recognition. Elsevier, New York (1990)
Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)
Microship. PIC16F877 datasheet (2001), ww1.microchip.com/downloads/en/DeviceDoc/30292c.pdf
Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)
Standaert, F.-X., Ors, S.B., Preneel, B.: Power analysis of an FPGA implementation of Rijndael: Is pipelining a DPA countermeasure? In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 30–44. Springer, Heidelberg (2004)
Standaert, F.-X., Peeters, E., Macé, F., Quisquater, J.-J.: Updates on the security of FPGAs against power analysis attacks. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds.) ARC 2006. LNCS, vol. 3985, pp. 335–346. Springer, Heidelberg (2006)
Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: Efficient implementation of Rijndael encryption in reconfigurable hardware: Improvements and design tradeoffs. In: Dittrich, K.R. (ed.) OODBS 1988. LNCS, vol. 334, pp. 334–350. Springer, Heidelberg (1988)
Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Archambeau, C., Peeters, E., Standaert, F.X., Quisquater, J.J. (2006). Template Attacks in Principal Subspaces. In: Goubin, L., Matsui, M. (eds) Cryptographic Hardware and Embedded Systems - CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894063_1
Download citation
DOI: https://doi.org/10.1007/11894063_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46559-1
Online ISBN: 978-3-540-46561-4
eBook Packages: Computer ScienceComputer Science (R0)