Abstract
In this paper, we study learning-related complexity of linear ranking functions from n-dimensional Euclidean space to {1,2,...,k}. We show that their graph dimension, a kind of measure for PAC learning complexity in the multiclass classification setting, is Θ(n+k). This graph dimension is significantly smaller than the graph dimension Ω(nk) of the class of {1,2,...,k}-valued decision-list functions naturally defined using k–1 linear discrimination functions. We also show a risk bound of learning linear ranking functions in the ordinal regression setting by a technique similar to that used in the proof of an upper bound of their graph dimension.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-David, S., Cesa-Bianchi, N., Haussler, D., Long, P.M.: Characterizations of Learnability for Classes of {0,...,n}-Valued Functions. Journal of Computer and System Sciences 50, 74–86 (1995)
Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis Dimension. Journal of the ACM 36(4), 929–965 (1989)
Crammer, K., Singer, Y.: Pranking with Ranking. In: Advances in Neural Information Processing 14, pp. 641–647 (2002)
Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg (1987)
Herbrich, R., Graepel, T., Obermayer, K.: Large Margin Rank Boundaries for Ordinal Regression. In: Advances in Large Margin Classifiers, pp. 115–132 (2000)
Karmarkar, N.: A New Polynomial-Time Algorithm for Linear Programming. Combinatorica 4, 373–395 (1984)
Nakamura, A., Abe, N.: Collaborative Filtering using Weighted Majority Prediction Algorithms. In: Proceedings of the 15th International Conference on Machine Learning, pp. 395–403 (1998)
Nakamura, A., Kudo, M., Tanaka, A.: Collaborative filtering using restoration operators. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS, vol. 2838, pp. 339–349. Springer, Heidelberg (2003)
Natarajan, B.K.: On Learning Sets and Functions. Machine Learning 4, 67–97 (1989)
Rajaram, S., Garg, A., Zhou, X.S., Huang, T.S.: Classification Approach towards Ranking and Sorting Problems. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 301–312. Springer, Heidelberg (2003)
Shashua, A., Levin, A.: Taxonomy of Large Margin Principle Algorithms for Ordinal Regression Problems. Technical Report, -39, Leibniz Center for Research, School of Computer Science and Eng., the Hebrew University of Jerusalem (2002)
Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (1999)
Vapnik, V.N., Chervonenkis, A.Y.: On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nakamura, A. (2006). Learning-Related Complexity of Linear Ranking Functions. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds) Algorithmic Learning Theory. ALT 2006. Lecture Notes in Computer Science(), vol 4264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894841_30
Download citation
DOI: https://doi.org/10.1007/11894841_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46649-9
Online ISBN: 978-3-540-46650-5
eBook Packages: Computer ScienceComputer Science (R0)