Skip to main content

Learning-Related Complexity of Linear Ranking Functions

  • Conference paper
Algorithmic Learning Theory (ALT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4264))

Included in the following conference series:

  • 744 Accesses

Abstract

In this paper, we study learning-related complexity of linear ranking functions from n-dimensional Euclidean space to {1,2,...,k}. We show that their graph dimension, a kind of measure for PAC learning complexity in the multiclass classification setting, is Θ(n+k). This graph dimension is significantly smaller than the graph dimension Ω(nk) of the class of {1,2,...,k}-valued decision-list functions naturally defined using k–1 linear discrimination functions. We also show a risk bound of learning linear ranking functions in the ordinal regression setting by a technique similar to that used in the proof of an upper bound of their graph dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-David, S., Cesa-Bianchi, N., Haussler, D., Long, P.M.: Characterizations of Learnability for Classes of {0,...,n}-Valued Functions. Journal of Computer and System Sciences 50, 74–86 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis Dimension. Journal of the ACM 36(4), 929–965 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Crammer, K., Singer, Y.: Pranking with Ranking. In: Advances in Neural Information Processing 14, pp. 641–647 (2002)

    Google Scholar 

  4. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  5. Herbrich, R., Graepel, T., Obermayer, K.: Large Margin Rank Boundaries for Ordinal Regression. In: Advances in Large Margin Classifiers, pp. 115–132 (2000)

    Google Scholar 

  6. Karmarkar, N.: A New Polynomial-Time Algorithm for Linear Programming. Combinatorica 4, 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Nakamura, A., Abe, N.: Collaborative Filtering using Weighted Majority Prediction Algorithms. In: Proceedings of the 15th International Conference on Machine Learning, pp. 395–403 (1998)

    Google Scholar 

  8. Nakamura, A., Kudo, M., Tanaka, A.: Collaborative filtering using restoration operators. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS, vol. 2838, pp. 339–349. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Natarajan, B.K.: On Learning Sets and Functions. Machine Learning 4, 67–97 (1989)

    Google Scholar 

  10. Rajaram, S., Garg, A., Zhou, X.S., Huang, T.S.: Classification Approach towards Ranking and Sorting Problems. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 301–312. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Shashua, A., Levin, A.: Taxonomy of Large Margin Principle Algorithms for Ordinal Regression Problems. Technical Report, -39, Leibniz Center for Research, School of Computer Science and Eng., the Hebrew University of Jerusalem (2002)

    Google Scholar 

  12. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (1999)

    Google Scholar 

  13. Vapnik, V.N., Chervonenkis, A.Y.: On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakamura, A. (2006). Learning-Related Complexity of Linear Ranking Functions. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds) Algorithmic Learning Theory. ALT 2006. Lecture Notes in Computer Science(), vol 4264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894841_30

Download citation

  • DOI: https://doi.org/10.1007/11894841_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46649-9

  • Online ISBN: 978-3-540-46650-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics