Skip to main content

Ontology with Likeliness and Typicality of Objects in Concepts

  • Conference paper
Conceptual Modeling - ER 2006 (ER 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4215))

Included in the following conference series:

Abstract

Ontologies play an indispensable role in the Semantic Web by specifying the definitions of concepts and individual objects. However, most of the existing methods for constructing ontologies can only specify concepts as crisp sets. However, we cannot avoid encountering concepts that are without clear boundaries, or even vague in meanings. Therefore, existing ontology models are unable to cope with many real cases effectively. With respect to a certain category, certain objects are considered as more representative or typical. Cognitive psychologists explain this by the prototype theory of concepts. This notion should also be taken into account to improve conceptual modeling. While there has been different research attempting to handle vague concepts with fuzzy set theory, formal methods for measuring typicality of objects are still insufficient. We propose a cognitive model of concepts for ontologies, which handles both likeliness (fuzzy membership grade) and typicality of individuals. We also discuss the nature and differences between likeliness and typicality. This model not only enhances the effectiveness of conceptual modeling, but also brings the results of reasoning closer to human thinking. We believe that this research is beneficial to future research on ontological engineering in the Semantic Web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armstrong, S.L., Gleitman, L.R., Gleitman, H.: What some concepts might not be. Cognition 13(3), 263–308 (1983)

    Article  Google Scholar 

  2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)

    Article  Google Scholar 

  3. Cross, V.: Uncertainty in the automation of ontology matching. In: 4th International Symposium on Uncertainty Modelling and Analysis (2003)

    Google Scholar 

  4. Cross, V., Voss, C.R.: Fuzzy ontologies for multilingual document exploitation. In: Proceedings of the 1999 Conference of NAFIPS, pp. 392–397 (1999)

    Google Scholar 

  5. Ding, Y., Foo, S.: Ontology research and development part 1 – a review of ontology generation. Journal of Information Science 28(2) (2002)

    Google Scholar 

  6. Ding, Y., Foo, S.: Research and development: Part 2 – a review of ontology mapping and evolving. Journal of Information Science 28(4) (2002)

    Google Scholar 

  7. Dubois, D., Prade, H., Rossazza, J.P.: Vagueness, typicality, and uncertainty in class hierarchies. International Journal of Intelligent Systems 6, 167–183 (1991)

    Article  Google Scholar 

  8. Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  9. Galotti, K.M.: Cognitive Psychology In and Out of the Laboratory, 3rd edn. Wadsworth, Belmont (2004)

    Google Scholar 

  10. Gómez-Pérez, A., Manzano-Macho, D.: An overview of methods and tools for ontology learning from texts. Knowl. Eng. Rev. 19(3), 187–212 (2004)

    Article  Google Scholar 

  11. Grossi, D., Dignum, F., Meyer, J.-J.C.: Contextual taxonomies. In: Proceedings of Fifth Internationanal Workshop on Computational Logic in Multi-Agent Systems (2004)

    Google Scholar 

  12. Grossi, D., Dignum, F., Meyer, J.-J.C.: Context in categorization. In: Workshop on Context Representation and Reasoning (2005)

    Google Scholar 

  13. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–220 (1993)

    Article  Google Scholar 

  14. Guarino, N.: Formal ontology and information system. In: Proceedings of the Formal Ontology and Information System (1998)

    Google Scholar 

  15. Guha, R., McCool, R., Miller, E.: Semantic search. In: WWW 2003: Proceedings of the 12th int. conf. on World Wide Web, pp. 700–709 (2003)

    Google Scholar 

  16. Helsper, E.M., van der Gaag, L.C., Feelders, A.J., Loeffen, W.L.A., Geenen, P.L., Elbers, A.R.W.: Bringing order into bayesian-network construction. In: Proceedings of Third International Conference on Knowledge Capture (2005)

    Google Scholar 

  17. Hölldobler, S., Dinh Khang, T., Störr, H.-P.: A fuzzy description logic with hedges as concept modifiers. In: IPMU (2004)

    Google Scholar 

  18. Kamp, H., Partee, B.: Prototype theory and compositionality. Cognition 57, 129–191 (1995)

    Article  Google Scholar 

  19. Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description logic. In: Proceedings of the 14th National Conference on AI, pp. 390–397 (1997)

    Google Scholar 

  20. McGuinness, D.L., van Harmelen, F.: OWL web ontology language overview (2004), http://www.w3.org/TR/owl-features/

  21. Parry, D.: A fuzzy ontology for medical document retrieval. In: CRPIT, pp. 121–126 (2004)

    Google Scholar 

  22. Rocha, C., Schwabe, D., de Aragao, M.: A hybrid approach for searching in the semantic web. In: WWW 2004, pp. 374–383 (2004)

    Google Scholar 

  23. Rosch, E.H.: On the internal structure of perceptual and semantic categories. In: More, T.E. (ed.) Cognitive Development and the Acquisition of Language. Academic Press, New York (1973)

    Google Scholar 

  24. Rosch, E.H.: Cognitive represerntations of semantic categories. Journal of Exp. Psy. 104, 192–233 (1975)

    Google Scholar 

  25. Rosch, E., Mervis, C.B.: Family resemblances: Studies in the internal structural of categories. Cognitive Psychology 7, 573–605 (1975)

    Article  Google Scholar 

  26. Roth, E.M., Shoben, E.J.: The effect of context on the structure of categories. Cognitive Psychology 15, 346–378 (1983)

    Article  Google Scholar 

  27. Shamsfard, M., Abdollahzadeh Barforoush, A.: Learning ontologies from natural language texts. Int. J. Hum.-Comput. Stud. 60(1), 17–63 (2004)

    Article  Google Scholar 

  28. Smith, E.E., Medin, D.L.: Categories and Concepts. Harvard University Press, Cambridge (1981)

    Google Scholar 

  29. Straccia, U.: A fuzzy description logic. In: AAAI, pp. 594–599 (1998)

    Google Scholar 

  30. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)

    MATH  MathSciNet  Google Scholar 

  31. Tamma, V., Bench-Capon, T.J.M.: An ontology model to facilitate knowledge sharing in multi-agent systems. Knowledge Engineering Review 17(1), 41–60 (2002)

    Google Scholar 

  32. Widyantot, D.H., Yen, J.: Using fuzzy ontology for query refinement in a personalized abstract search engine. In: Proceedings of IFSA and NAFIPS (2001)

    Google Scholar 

  33. Wiesman, F., Roos, N.: Domain independent learning of ontology mappings. In: AAMAS, pp. 846–853 (2004)

    Google Scholar 

  34. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yeung, Cm.A., Leung, Hf. (2006). Ontology with Likeliness and Typicality of Objects in Concepts. In: Embley, D.W., Olivé, A., Ram, S. (eds) Conceptual Modeling - ER 2006. ER 2006. Lecture Notes in Computer Science, vol 4215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11901181_9

Download citation

  • DOI: https://doi.org/10.1007/11901181_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47224-7

  • Online ISBN: 978-3-540-47227-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics