Abstract
This paper deals with model-checking of fragments and extensions of CTL* on infinite-state Presburger counter systems, where the states are vectors of integers and the transitions are determined by means of relations definable within Presburger arithmetic. We have identified a natural class of admissible counter systems (ACS) for which we show that the quantification over paths in CTL* can be simulated by quantification over tuples of natural numbers, eventually allowing translation of the whole Presburger-CTL* into Presburger arithmetic, thereby enabling effective model checking. We have provided evidence that our results are close to optimal with respect to the class of counter systems described above. Finally, we design a complete semi-algorithm to verify first-order LTL properties over trace-flattable counter systems, extending the previous underlying FAST semi-algorithm to verify reachability questions over flattable counter systems.
Supported by CNRS/NRF project No 15469.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification of infinite structures. In: Handbook of Process Algebra, pp. 545–623. Elsevier, Amsterdam (2001)
Bruyère, V., Dall’Olio, E., Raskin, J.F.: Durations, parametric model-checking in timed automata with presburger arithmetic. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 687–698. Springer, Heidelberg (2003)
Bouajjani, A., Echahed, R., Habermehl, P.: On the verification problem of nonregular properties for nonregular processes. In: LICS 1995, pp. 123–133 (1995)
Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)
Bardin, S., Finkel, A., Leroux, J.: FASTer acceleration of counter automata in practice. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 576–590. Springer, Heidelberg (2004)
Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Fast Acceleration of Symbolic Transition systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 118–121. Springer, Heidelberg (2003)
Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 474–488. Springer, Heidelberg (2005)
Bultan, T., Gerber, R., Pugh, W.: Symbolic model checking of infinite state systems using Presburger arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 400–411. Springer, Heidelberg (1997)
Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel systems with nonregular sets of configurations. TCS 221(1–2), 211–250 (1999)
Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD thesis, Université de Liège (1998)
Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg (2000)
Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Presburger analysis. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)
Cortier, V.: About the decision of reachability for register machines. Theoretical Informatics and Applications 36(4), 341–358 (2002)
Demri, S.: Temporal logics. Lecture notes for MPRI, 2005/2006 www.lsv.ens-cachan.fr/~demri/
Dang, Z., San Pietro, P., Kemmerer, R.: Presburger liveness verification of discrete timed automata. TCS 299, 413–438 (2003)
Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS 1999, pp. 352–359 (1999)
Finkel, A., Leroux, J.: How to compose Presburger accelerations: Applications to broadcast protocols. In: Stumptner, M., Corbett, D.R., Brooks, M. (eds.) Canadian AI 2001. LNCS (LNAI), vol. 2256, pp. 145–156. Springer, Heidelberg (2001)
Fribourg, L., Olsén, H.: Proving safety properties of infinite state systems by compilation into presburger arithmetic. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 213–227. Springer, Heidelberg (1997)
Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown systems (extended abstract). In: INFINITY 1997. ENTCS, vol. 9, Elsevier Science, Amsterdam (1997)
Ibarra, O.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)
Ibarra, O., Su, J., Dang, Z., Bultan, T., Kemmerer, A.: Counter machines: Decidable properties and applications to verification problems. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 426–435. Springer, Heidelberg (2000)
Lagarias, J.: The 3x + 1 problem and its generalizations. The American Mathematical Monthly 92(1), 3–23 (1985)
Leroux, J.: Algorithmique de la vérification des systèmes à compteurs. Approximation et accélération. Implémentation de l’outil FAST. PhD thesis, ENS de Cachan, France (2003)
Leroux, J.: Regular acceleration for number decision diagrams. Technical Report 1385-06, LABRI (January 2006)
Leroux, J., Sutre, G.: Flat counter systems are everywhere! In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)
Minsky, M.: Computation, Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)
Schuele, T., Schneider, K.: Global vs. local model checking: A comparison of verification techniques for infinite state systems. In: SEFM 2004, pp. 67–76. IEEE, Los Alamitos (2004)
Walukiewicz, I.: Pushdown processes: games and model-checking. I & C 164(2), 234–263 (2001)
Wolper, P.: Temporal logic can be more expressive. I & C 56, 72–99 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Demri, S., Finkel, A., Goranko, V., van Drimmelen, G. (2006). Towards a Model-Checker for Counter Systems. In: Graf, S., Zhang, W. (eds) Automated Technology for Verification and Analysis. ATVA 2006. Lecture Notes in Computer Science, vol 4218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11901914_36
Download citation
DOI: https://doi.org/10.1007/11901914_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47237-7
Online ISBN: 978-3-540-47238-4
eBook Packages: Computer ScienceComputer Science (R0)