
A General Graph Model For Representing Exact
Communication Volume in Parallel Sparse

Matrix–Vector Multiplication

Aleksandar Trifunović and William Knottenbelt
{at701,wjk}@doc.ic.ac.uk

Department of Computing, Imperial College London, South Kensington Campus,
London SW7 2AZ, UK

Abstract. In this paper, we present a new graph model of sparse ma-
trix decomposition for parallel sparse matrix–vector multiplication. Our
model differs from previous graph-based approaches in two main re-
spects. Firstly, our model is based on edge colouring rather than ver-
tex partitioning. Secondly, our model is able to correctly quantify and
minimise the total communication volume of the parallel sparse matrix–
vector multiplication while maintaining the computational load balance
across the processors. We show that our graph edge colouring model is
equivalent to the fine-grained hypergraph partitioning-based sparse ma-
trix decomposition model. We conjecture that the existence of such a
graph model should lead to faster serial and parallel sparse matrix de-
composition heuristics and associated tools.

1 Introduction

Parallel sparse matrix–vector multiplication is the core operation in iterative
solvers for large-scale linear systems and eigensystems. Major application areas
include Markov modelling, linear programming and PageRank computation.

Efficient parallel sparse matrix–vector multiplication requires intelligent a
priori partitioning of the sparse matrix non-zeros across the processors to en-
sure that interprocessor communication is minimised subject to a load balancing
constraint. The problem of sparse matrix decomposition can be reformulated in
terms of a graph or hypergraph partitioning problem. These partitioning prob-
lems are NP-hard [10], so (sub-optimal) heuristic algorithms are used in practice.
The resulting graph or hypergraph partition is then used to direct the distribu-
tion of matrix elements across processors.

The limits of the existing graph partitioning approaches are outlined in [11,
8, 4]. For example, in the case of one-dimensional row-wise or column-wise par-
titioning of a sparse matrix for parallel sparse matrix–vector multiplication, ex-
isting graph models cannot optimise the exact communication volume; instead,
they operate indirectly by optimising an upper bound on the communication
volume.

On the other hand, hypergraph models that correctly represent the total com-
munication volume have been proposed and are thus preferred to graph models

in practical applications. Moreover, recently two parallel hypergraph partition-
ing algorithms have also been developed and implemented [17, 16, 15, 7]. How-
ever, graph models do have the advantage that heuristic algorithms operating
on graphs are faster and are significantly easier to parallelise than heuristic al-
gorithms that operate on hypergraphs [15, 7].

This paper presents a bipartite graph model for parallel sparse matrix–vector
multiplication that correctly models the total interprocessor communication vol-
ume while maintaining the computational load balance. The graph model is
derived from the fine-grained hypergraph model presented by Çatalyürek and
Aykanat in [5]. The edges in the graph model the non-zeros in the matrix and
thus instead of partitioning the set of vertices, as in existing graph and hyper-
graph sparse matrix decomposition models, our model requires the colouring of
the edges of the graph so that a colouring objective is minimised. Whereas the
widely accepted meaning of the phrase ”edge colouring” is that the edges of the
graph are coloured such that edges incident on the same vertex have different
colours, the edge colouring that we seek imposes no such restriction, i.e. we ad-
mit colourings where distinct edges incident on the same vertex are of the same
colour. The colouring objective correctly models the total interprocessor com-
munication volume, while the computational load balance is maintained by the
constraint limiting the number of edges (matrix non-zeros) that can be assigned
the same colour.

We anticipate that the advantages of our graph model over existing hyper-
graph models will be twofold. Firstly, heuristic algorithms for minimising the
edge-colouring objective in a graph should be faster than heuristic algorithms
for the corresponding hypergraph partitioning problem and secondly, the edge-
colouring algorithms should yield more efficient parallel algorithms than their
hypergraph partitioning counterparts, as indicated by respective state-of-the-art
algorithms for graph and hypergraph partitioning.

The remainder of this paper is organized as follows. Section 2 describes the
models used in sparse matrix decomposition for parallel sparse matrix–vector
multiplication. Section 3 describes the main contribution of our paper, the graph
edge colouring model. Section 4 concludes and considers future directions for this
work.

2 Decomposition Models for Parallel Sparse
Matrix–Vector Multiplication

2.1 Preliminaries

Consider a sparse m × n matrix A. We require that the sparse matrix–vector
product Ax = b is distributed across p processors, where x and b are dense
n- and m-vectors respectively. In [19], Vastenhouw and Bisseling note that the
natural parallel algorithm, with an arbitrary non-overlapping distribution of the
matrix and the vectors across the processors, has the following general form:

1. Each processor sends its components xj to those processors that possess a
non-zero aij in column j.

2. Each processor computes the products aijxj for its non-zeros aij and adds
the results for the same row index i. This yields a set of contributions bis,
where s is the processor identifier 1 ≤ s ≤ p.

3. Each processor sends its non-zero contributions bis to the processor that is
assigned vector element bi.

4. Each processor adds the contributions received for its components bi, giving
bi =

∑p
s=1 bis.

In common with other authors (e.g. [19, 2]), we assume that the processors syn-
chronize globally between the above phases. The computational requirement of
step 2 dominates that of step 4 [19]; henceforth we assume that the computa-
tional load of the entire parallel sparse matrix–vector multiplication algorithm
can be represented by the computational load induced during step 2 only.

It is noted in [2] that the decomposition of the sparse matrix A to the p
processors may be done in one of the following ways:

1. One-dimensional [4]; entire rows (or columns) of the matrix are allocated to
individual processors. This has the effect of making the communication step 3
(or 1 in the column case) in the parallel sparse matrix–vector multiplication
pipeline redundant.

2. Two-dimensional Cartesian [6]; each processor receives a submatrix defined
by a partition of rows and columns of A.

3. Two-dimensional non-Cartesian with the Mondriaan structure [19]; obtained
by recursively bipartitioning the matrix in either the row or column direction.

4. Arbitrary (fine-grained) two-dimensional [5]; each non-zero is assigned indi-
vidually to a processor. This is the most general decomposition.

The above decompositions of the sparse matrix A to the p processors are
usually modelled as a graph or hypergraph partitioning problem.

2.2 Graph and Hypergraph Partitioning

Given a finite set of m vertices, V = {v1, . . . , vm}, a hypergraph on V is a
set system, here denoted H(V, E), such that E ⊂ P(V), where P(V) is the
power set of V . The set E = {e1, . . . , en} is said to be the set of hyperedges
of the hypergraph. When E ⊂ V (2), each hyperedge has cardinality two and
the resulting set system is known as a graph. Henceforth, definitions are given
in terms of hypergraphs (although they also hold for graphs) and whenever we
specifically need to distinguish between a graph and a hypergraph, the graph
shall be denoted by G(V, E).

A hyperedge e ∈ E is said to be incident on a vertex v ∈ V in a hypergraph
H(V, E) if, and only if, v ∈ e. The incidence matrix of a hypergraph H(V, E),
V = {v1, . . . , vm} and E = {e1, . . . , en}, is the m × n matrix M = (mij), with
entries

mij =
{

1 if vi ∈ ej

0 otherwise (1)

In a hyperedge- and vertex-weighted hypergraph, each hyperedge e ∈ E and each
vertex v ∈ V are assigned a scalar weight.

A partition Π of a hypergraph H(V, E) is a finite collection of subsets of V
(called parts), such that P ∩ P ′ = ∅ is true for all P, P ′ ∈ Π and

⋃
i Pi = V .

The weight w(P) of a part P ∈ Π is given by the sum of the constituent vertex
weights. Given a real-valued balance criterion 0 < ε < 1, the k-way hypergraph
partitioning problem requires a k-way partition Π that satisfies

w(Pi) < (1 + ε)Wavg (2)

for all 1 ≤ i ≤ k (where Wavg =
∑k

i=1 w(Pi)/k) and is such that some partition-
ing objective function fp is minimised.

For sparse matrix decomposition problems, the partitioning objective of inter-
est is the k−1 metric [4]. Here, each hyperedge e ∈ E contributes (λ(e)−1)w(e)
to the objective function, where λ(e) is the number of parts spanned by, and
w(e) the weight of, hyperedge e:

fp(Π) =
∑

e∈E
(λ(e)− 1)w(e) (3)

Note that for graph partitioning this reduces to the edge-cut metric, since the
cardinality of each edge is two.

2.3 Related Work

In [12], Hendrickson and Kolda outline a bipartite graph partitioning-based
model for decomposition of a general rectangular non-symmetric sparse ma-
trix. The non-zero structure of a sparse matrix A corresponds to an undirected
bipartite graph G(V, E). We have V = R ∪ C, such that R = {r1, . . . , rm} and
C = {c1, . . . , cn} and (ri, cj) ∈ E if and only if aij 6= 0. In the row decomposition-
based model, the weight of the row vertices {v ∈ R} is given by the number
of non-zeros in each row. The column vertices {v ∈ C} and the edges have
unit weights. The partitioning constraint requires that the total weight of ver-
tices from R allocated to each processor is approximately the same. It is noted
that an exact representation of the communication volume may be given by∑

i(λ(ci) − 1), where λ(ci) is the number of distinct parts that neighbours of
ci ∈ C have been allocated to. The authors chose to approximate this metric
with the number of edges cut (and thus approximately model the total commu-
nication volume) because of the difficulties in minimising the metric that yields
the exact communication volume.

Incidentally, in this work we derive a bipartite graph with the same topologi-
cal structure; however, we use a different weighting on the vertices so as to model
the most general sparse matrix decomposition; further, we correctly quantify the
total communication volume using a graph edge colouring metric.

Hypergraph partitioning was first applied in sparse matrix decomposition
for parallel sparse matrix–vector multiplication by Çatalyürek and Aykanat

in [4]. They proposed a one-dimensional decomposition model for a square non-
symmetric sparse matrix; without loss of generality, we here describe the row-
based decomposition.

The sparsity pattern of the sparse matrix A is interpreted as the incidence
matrix of a hypergraph H(V, E). The rows of A are interpreted as the vertices
and the columns of A the hyperedges in H. The weight of vertex vi ∈ V (mod-
elling row i in A) is given by the number of non-zero elements in row i. The
vector elements xi and bi are allocated to the processor that is allocated row i
of A. Because the authors assumed a symmetric partitioning of the vectors x
and b (entries xi and bi always allocated to the same processor), in order for
the k − 1 metric to correctly represent the total communication volume of the
parallel sparse matrix–vector multiplication, a “dummy” non-zero aii is added
to the model whenever aii = 0. Note that in general the addition of dummy
non-zeros is not necessary. For a general m×n sparse matrix, provided that the
vector component xi is assigned to a processor allocated a non-zero in column
i and the vector component bj is assigned to a processor allocated a non-zero
in row j, the k − 1 metric will correctly represent the total communication vol-
ume of the parallel sparse matrix–vector multiplication under a one-dimensional
decomposition.

In [6], Çatalyürek and Aykanat extend the one-dimensional model to a coarse-
grained two-dimensional one. The model yields a cartesian partitioning of the
matrix; the rows are partitioned into α sets Rπ using the one-dimensional row-
based hypergraph partitioning model and the columns are partitioned into β
sets Cπ using the column-based one-dimensional hypergraph partitioning model.
The p = αβ cartesian products Rπ × Cπ are assigned to processors with the
(symmetric) vector distribution given by the distribution of the matrix diagonal.

Vastenhouw and Bisseling [19] propose recursive bipartitioning of the general
sparse matrix, alternating between the row and column directions. They show
that when partitioning a general sparse matrix, its submatrices can be parti-
tioned independently while still correctly modelling the total communication
volume.

In [5], Çatalyürek and Aykanat propose a hypergraph model for the most
general sparse matrix decomposition. In this fine-grained model, each aij 6= 0
is modelled by a vertex v ∈ V , so that a p-way partition Π of the hypergraph
H(V, E) will correspond to an assignment of the matrix non-zeros to p proces-
sors. The causes of communication between processors in steps 1 and 3 of the
parallel sparse matrix–vector multiplication pipeline define the hyperedges of
the hypergraph model. In step 1, the processor with non-zero aij requires vector
element xj for computation during step 2. This results in a communication of
xj to the processor assigned aij if xj had been assigned to a different processor.
The dependence between the non-zeros in column j of the matrix A and vector
element xj can be modelled by a hyperedge, whose constituent vertices are the
non-zeros of column j of the matrix A. Such hyperedges are henceforth called
column hyperedges. In [5], a “dummy” non-zero aii is added to the model if
aii = 0, because symmetric partitioning of the vectors x and b is used. The

construction of hyperedges modelling the communication requirements in step 3
is identical, except that now the communication requirement depends on the
partitioning of the vector b. These hyperedges are called row hyperedges. The
k − 1 metric evaluated on partitions of this hypergraph then correctly models
the total communication volume.

This fine-grained two-dimensional model is essentially a generalisation of the
one dimensional model (in which either only row or only column hyperedges are
present). As previously noted in the case of the one-dimensional decomposition,
the addition of dummy non-zeros is also not necessary in the two-dimensional
model provided the vector component xj is assigned to a processor allocated a
non-zero in column j and the vector component bi is assigned to a processor
allocated a non-zero in row i.

In [18, 2], the problem of vector partitioning is considered with the aim of
improving the communication balance and reducing the number of messages sent
between the processors, while maintaining the overall communication volume.
Provided we are prepared to accept an arbitrary partition of vectors x and b
across the processors, the problem of vector partitioning is orthogonal to the
problem of partitioning the sparse matrix; we know that for any given matrix
partition produced by one of the hypergraph partitioning-based decomposition
models and the total communication volume given by the k − 1 metric, there
exists a partition of the vectors x and b across the processors that yields the
claimed total communication volume. Here we will not explicitly consider the
problem of vector partitioning when describing our graph-based model, but note
instead that incorporating vector partitioning heuristics within a model for the
total communication volume is an area of ongoing research [1].

3 The General Graph Model

In this section, we derive our graph colouring-based model for sparse matrix
decomposition. We show that our model yields a bipartite graph, which is in fact
the same bipartite graph that results from applying the model of Hendrickson
and Kolda [12], described in Section 2.3.

3.1 Graph Model Construction

We note that the transpose of the incidence matrix, MT , defines the dual hyper-
graph H∗(V ∗, E∗) [3]. Duality is commutative, so that H(V, E) is also the dual
of H∗(V ∗, E∗).

The hyperedges in H correspond to vertices in H∗ and the vertices in H to
the hyperedges in H∗. To see this, let ei ∈ E and ej ∈ E denote the ith and jth

hyperedges in H. Then, the ith and jth vertices in the dual hypergraph H∗ are
connected by a hyperedge e∗ ∈ E∗ only if there exists some vertex v ∈ V such that
v ∈ ei and v ∈ ej . The hyperedge e∗ in the dual H∗ is in direct correspondence
with the vertex v. Let δ : V → E∗ denote the (invertible) function that maps
the vertices in H to hyperedges in H∗.

Let H denote the hypergraph arising from the most general (fine-grained)
sparse matrix decomposition model described in Section 2.3 and consider H∗,
its dual. Because each vertex v in V (that represents a non-zero in A) is incident
on exactly one row and one column hyperedge, the incidence matrix M has two
non-zeros in each row and thus the incidence matrix of the dual MT has exactly
two non-zeros in each column. Clearly, the dual hypergraph H∗ is then a graph.
Moreover, this graph is bipartite. To see this, consider vertices v∗, w∗ ∈ V ∗ that
correspond to row hyperedges in the hypergraph arising from the hypergraph
model H. Because the row hyperedges share no common vertices in H, v∗ and
w∗ are not connected. A similar argument using column hyperedges shows that
(hyper)edges in H∗ only connect vertices corresponding to column hyperedges
in H with vertices corresponding to row hyperedges in H. Henceforth, when
referring to the dual of the hypergraph arising from the two-dimensional fine-
grained model, we will denote it G(V ∗, E∗).

To see that a bipartite graph with the same structure as G(V ∗, E∗) also arises
from the model of Hendrickson and Kolda [12], described in Section 2.3, note
that the sets of vertices R and C in Hendrickson and Kolda’s model are the
sets of vertices in the dual graph corresponding to row and column hyperedges
in the fine-grained hypergraph model. Hendrickson and Kolda partition the set
R across the processors, which corresponds to allocating row hyperedges in the
fine-grained hypergraph model to processors. Because row hyperedges in the fine-
grained model just define the rows of the sparse matrix A, we can (correctly)
deduce that the model of Hendrickson and Kolda is in fact a row-wise one-
dimensional sparse matrix decomposition.

3.2 The Communication Cost Metric

Having constructed the bipartite graph model G(V ∗, E∗), we define a communi-
cation cost metric that correctly models both the total communication volume
and the computational load induced on each processor during the parallel sparse
matrix–vector multiplication. We know that the hypergraph partitioning prob-
lem with the k−1 objective achieves this for the hypergraph model H(V, E) with
incidence matrix M.

The weight of each vertex v∗ ∈ V ∗ is set to the weight of the corresponding
hyperedge in H and the weight of each (hyper)edge e∗ ∈ E∗ is set to the weight of
the corresponding vertex in V . We seek an edge colouring of G (i.e. an assignment
of colours to edges in E∗) using p colours and allowing edges incident on the same
vertex to be assigned the same colour. Let c(e∗) denote the colour assigned to
edge e∗ and let Ci, 1 ≤ i ≤ p be the colours used. The colouring must satisfy
the following constraint (for each 1 ≤ i ≤ p):

∑

{e∗∈E∗|c(e∗)=Ci}
w(e∗) < (1 + ε)Wavg (4)

where ε is the prescribed balance criterion and Wavg =
∑

e∗∈E∗ w(e∗)/p. Because
the weight of each edge e∗ ∈ E∗ is set to the weight of the corresponding vertex

in V , the total edge-weight allocated a distinct colour exactly corresponds to
the computational load induced on the processor represented by that colour (as
there are p colours and p processors).

The colouring objective is defined in terms of the number of distinct colours
that are “induced” onto each vertex by edges connected to it. An edge e∗ ∈ E∗,
assigned the colour Ci, 1 ≤ i ≤ p, also induces the colour Ci onto a vertex
v∗ ∈ V ∗ if and only if v∗ ∈ e∗. The colouring objective is to minimise the
function fc given by

fc(G) =
∑

v∗∈V ∗
w(v∗)(σ(v∗)− 1) (5)

where σ(v∗) represents the number of distinct colours induced onto vertex v∗ by
edges incident on it.

Proposition 1. Minimising the colouring objective in Equation 5 subject to the
constraint in Equation 2 is equivalent to minimising the total communication vol-
ume of parallel sparse matrix–vector multiplication while maintaining an overall
computational load balance across the processors.

Proof. Since the colouring constraint in Equation 4 is equivalent to maintaining
the imbalance in computational load within a (prescribed) factor of ε, it remains
to show that Equation 5 yields the total communication volume of parallel sparse
matrix–vector multiplication. To achieve this, it is enough to show that the
colouring objective fc(G) for the graph G is equivalent to the k − 1 hypergraph
partitioning objective for (its dual) hypergraph H.

Let M be the incidence matrix of the hypergraph H, so that MT is the
incidence matrix of its dual graph G.

Now, consider the computation of the k− 1 objective (fp(Π) in Equation 3)
on a partition Π of H. In order to compute the sum in Equation 3, we need to
traverse the matrix M column-by-column. To compute λ(ei) for column (hyper-
edge) ei, we consider each non-zero in the ith column. The allocation of vertices
(rows of M) to parts associates a part (processor) with each non-zero in M so
that λ(ei) is given by the number of distinct parts associated with the non-zeros
in column i.

To compute fc(G), we traverse the matrix MT row-by-row. The quantity
σ(v∗i) is computed by considering each non-zero in the ith row of MT , so that
σ(v∗i) is given by the number of distinct colours associated with the non-zeros
in row i. But this is equivalent to traversing the matrix M column-by-column
and computing the number of distinct colours associated with the non-zeros in
column i. To obtain the edge colouring of the graph G that is equivalent to the
partition Π (in terms of the total communication volume and computational
load across the processors), assign colour Ci to edge e∗ whenever the vertex
v = δ−1(e∗) is assigned to part Pi, for all colours Ci and parts Pi, 1 ≤ i ≤ p. ¤

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Fig. 1. Sample sparse matrix for decomposition across 2 processors

3.3 Worked Example

Consider the sparse matrix shown in Figure 1, and consider a decomposition of
this matrix over two processors. A one-dimensional row-wise partitioning based
on a 1D hypergraph model with a 10% balance constraint results in the decom-
position shown in Figure 2. Matrix and vector elements assigned to processor 1
are coloured red; those assigned to processor 2 are coloured green. The resulting
total communication volume per sparse matrix–vector product is 6, and there is
a slight computational load imbalance (15 vs. 13 non-zero matrix elements).

Figure 4 shows our bipartite graph model, with edges coloured so as to mini-
mize the colouring objective of Equation 5 under ideal load balance. The result-
ing fine-grained sparse matrix decomposition is shown in Figure 3. The resulting
total communication volume per sparse matrix–vector product is 3, with no load
imbalance. Precisely the same decomposition emerges from a 2D fine-grained hy-
pergraph model based on vertex partitioning.

3.4 A Discussion of the Graph Model

In Section 3.2, we showed that our graph colouring-based model is as expres-
sive as the general fine-grained two-dimensional hypergraph partitioning-based
sparse matrix decomposition model. In this section, we briefly discuss possible
modifications of existing graph and hypergraph partitioning algorithms to the
given graph edge colouring problem and the anticipated advantages over ex-
isting hypergraph-based models. Of course, this does not preclude alternative
approaches to the edge colouring problem.

The multilevel approach yields algorithms of choice for both graph and hyper-
graph partitioning [15]. Reduction in complexity of the original problem instance
for our graph colouring objective is also possible via the multilevel method.

Consider the coarsening procedure for a graph G(V ∗, E∗). Given vertices
u, v, w ∈ V ∗ and edges (u, v), (u,w), (v, w) ∈ E∗, one could match the vertices

2 4 7 1 3 5 6 8

2

4

7

1

3

5

6

8

x

Fig. 2. Row-wise sparse matrix decom-
position under 1D hypergraph model

2 4 7 1 3 5 6 8

2

4

7

1

3

5

6

8

x

Fig. 3. Fine-grained sparse matrix de-
composition under bipartite graph model

r1

c1

c4

c5

c6

c8

r2

c2

c3

c7

r3

r4

r5

r6

r7

r8

Fig. 4. Bipartite graph model with optimal balanced edge colouring

u and v so that they form a cluster c = {u, v} (a vertex in the coarse graph
replacing u and v, whose weight is set to the sum of the weights of u and v).
Then, the edges (u, w) and (v, w) will be replaced in the coarser graph by the
edge (c, w), whose weight is set to be the sum of the weights of the edges (u,w)
and (v, w). The edge (u, v) is replaced with the “edge” consisting of only ver-
tex c, (c). However, unlike coarsening in the context of partitioning, we cannot
discard the edge (c), since the colour assigned to this edge will (potentially) con-

tribute to the colouring objective. We can, though, replace all duplicate edges
with a single instance of the edge, setting its weight as the sum of the weights of
the duplicate edges. The only difference between the coarse graphs produced by
coarsening algorithms in the context of graph partitioning and the graph colour-
ing, respectively, will be the (at most) |V ∗| additional singleton edges in the
graph colouring case, where V ∗ is the set of vertices in the coarsest graph. Like
uncoarsening in a multilevel partitioning algorithm, a colouring of the coarse
graph can be projected onto the finer graph while maintaining the value of the
colouring objective. We thus foresee that coarsening algorithms developed for
graph partitioning could be applied in the graph colouring context. We also ex-
pect that iterative improvement algorithms such as the Fiduccia and Mattheyses
algorithm [9] may be applied to our graph colouring problem. Feasible moves are
defined as colour changes of edges, such that the overall colouring imbalance sat-
isfies the prescribed constraints (cf. Equation 2).

We foresee two main advantages of the multilevel graph edge colouring al-
gorithms over their multilevel hypergraph partitioning counterparts in the con-
text of sparse matrix decomposition. As graph partitioning algorithms are in
general faster than corresponding hypergraph partitioning algorithms, we con-
jecture than the graph colouring model will yield faster algorithms than the
corresponding hypergraph partitioning algorithms. We also anticipate that the
graph colouring algorithms will offer significantly more scope for parallelism than
the corresponding hypergraph partitioning algorithms. This is attributed to the
fact that the cardinalities of hyperedges in a hypergraph may vary from one to
an upper bound given by the cardinality of the vertex set, whereas the cardi-
nality of every edge in a graph is two. Indeed, existing parallel multilevel graph
partitioning algorithms have demonstrated more natural parallelism than has
been hitherto shown for hypergraph partitioning [13, 14, 20, 7, 15].

4 Conclusion and Future Work

In this paper we have presented a new graph edge colouring-based model of
sparse matrix decomposition for parallel sparse matrix–vector multiplication.
Unlike previous graph-based models, our model correctly quantifies the total
communication volume of parallel sparse matrix–vector multiplication. Because
the edge-colouring algorithms operate on a graph instead of a hypergraph (as
the hitherto used partitioning algorithms do), we conjecture that our model will
lead to faster sparse matrix decomposition algorithms.

The initial focus of our future work will be an implementation of a multilevel
graph edge colouring algorithm in order to empirically evaluate the feasibility
of our model and provide a benchmark comparison with respect to existing
hypergraph partitioning-based models.

References

1. R.H. Bisseling, January 2006. Personal communication.

2. R.H. Bisseling and W. Meesen. Communication balancing in parallel sparse
matrix–vector multiplication. Electronic Transactions on Numerical Analysis: Spe-
cial Volume on Combinatorial Scientific Computing, 21:47–65, 2005.

3. B. Bollobás. Combinatorics. Cambridge University Press, 1986.
4. U.V. Çatalyürek and C. Aykanat. Hypergraph Partitioning-based Decomposition

for Parallel Sparse–Matrix Vector Multiplication. IEEE Transactions on Parallel
and Distributed Systems, 10(7):673–693, 1999.

5. U.V. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2D decom-
position of sparse matrices. In Proc. 8th International Workshop on Solving Irreg-
ularly Structured Problems in Parallel, San Francisco, USA, April 2001.

6. U.V. Çatalyürek and C. Aykanat. PaToH: Partitioning Tool for Hypergraphs,
Version 3.0, 2001.

7. K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V. Çatalyürek.
Parallel hypergraph partitioning for scientific computing. In Proc. 20th IEEE
International Parallel and Distributed Processing Symposium, 2006.

8. K.D. Devine, E.G. Boman, R.T. Heaphy, B.A. Hendrickson, J.D. Teresco, J.Faik,
J.E. Flaherty, and L.G. Gervasio. New Challenges in Dynamic Load Balancing.
Applied Numerical Mathematics, 52(2–3):133–152, 2005.

9. C.M. Fiduccia and R.M. Mattheyses. A Linear Time Heuristic For Improving
Network Partitions. In Proc. 19th IEEE Design Automation Conference, pages
175–181, 1982.

10. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., 1979.

11. B.A. Hendrickson. Graph Partitioning and Parallel Solvers: Has the Emperor No
Clothes. In Proc. Irregular’98, volume 1457 of LNCS, pages 218–225. Springer,
1998.

12. B.A. Hendrickson and T.G. Kolda. Partitioning Rectangular and Structurally
Nonsymmetric Sparse Matrices for Parallel Processing. SIAM Journal of Scientific
Computing, 21(6):248–272, 2000.

13. G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Parti-
tioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392,
1999.

14. G. Karypis, K. Schloegel, and V. Kumar. ParMeTiS: Parallel Graph Partitioning
and Sparse Matrix Ordering Library, Version 3.0. University of Minnesota, 2002.

15. A. Trifunović. Parallel Algorithms for Hypergraph Partitioning. PhD thesis, Im-
perial College London, February 2006.

16. A. Trifunović and W.J. Knottenbelt. A Parallel Algorithm for Multilevel k-way
Hypergraph Partitioning. In Proc. 3rd International Symposium on Parallel and
Distributed Computing, pages 114–121, University College Cork, Ireland, July 2004.

17. A. Trifunović and W.J. Knottenbelt. Towards a Parallel Disk-Based Algorithm
for Multilevel k-way Hypergraph Partitioning. In Proc. 5th Workshop on Parallel
and Distributed Scientific and Engineering Computing, April 2004.

18. B. Uçar and C. Aykanat. Encapsulating Multiple Communication-Cost Metrics
in Partitioning Sparse Rectangular Matrices for Parallel Matrix–Vector Multiples.
SIAM Journal on Scientific Computing, 25(6):1837–1859, 2004.

19. B. Vastenhouw and R.H. Bisseling. A Two-Dimensional Data Distribution Method
for Parallel Sparse Matrix–Vector Multiplication. SIAM Review, 47(1):67–95, 2005.

20. C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning for
adaptive unstructured meshes. J. Parallel Distrib. Comput., 47(2):102–108, 1997.

