Abstract
In this paper, we present a new graph model of sparse matrix decomposition for parallel sparse matrix–vector multiplication. Our model differs from previous graph-based approaches in two main respects. Firstly, our model is based on edge colouring rather than vertex partitioning. Secondly, our model is able to correctly quantify and minimise the total communication volume of the parallel sparse matrix–vector multiplication while maintaining the computational load balance across the processors. We show that our graph edge colouring model is equivalent to the fine-grained hypergraph partitioning-based sparse matrix decomposition model. We conjecture that the existence of such a graph model should lead to faster serial and parallel sparse matrix decomposition heuristics and associated tools.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bisseling, R.H.: Personal communication (January 2006)
Bisseling, R.H., Meesen, W.: Communication balancing in parallel sparse matrix–vector multiplication. Electronic Transactions on Numerical Analysis: Special Volume on Combinatorial Scientific Computing 21, 47–65 (2005)
Bollobás, B.: Combinatorics. Cambridge University Press, Cambridge (1986)
Çatalyürek, U.V., Aykanat, C.: Hypergraph Partitioning-based Decomposition for Parallel Sparse–Matrix Vector Multiplication. IEEE Transactions on Parallel and Distributed Systems 10(7), 673–693 (1999)
Çatalyürek, U.V., Aykanat, C.: A fine-grain hypergraph model for 2D decomposition of sparse matrices. In: Proc. 8th International Workshop on Solving Irregularly Structured Problems in Parallel, San Francisco, USA (April 2001)
Çatalyürek, U.V., Aykanat, C.: PaToH: Partitioning Tool for Hypergraphs, Version 3.0 (2001)
Devine, K.D., Boman, E.G., Heaphy, R.T., Bisseling, R.H., Çatalyürek, U.V.: Parallel hypergraph partitioning for scientific computing. In: Proc. 20th IEEE International Parallel and Distributed Processing Symposium (2006)
Devine, K.D., Boman, E.G., Heaphy, R.T., Hendrickson, B.A., Teresco, J.D., Faik, J., Flaherty, J.E., Gervasio, L.G.: New Challenges in Dynamic Load Balancing. Applied Numerical Mathematics 52(2–3), 133–152 (2005)
Fiduccia, C.M., Mattheyses, R.M.: A Linear Time Heuristic For Improving Network Partitions. In: Proc. 19th IEEE Design Automation Conference, pp. 175–181 (1982)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)
Hendrickson, B.A.: Graph Partitioning and Parallel Solvers: Has the Emperor No Clothes. In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 218–225. Springer, Heidelberg (1998)
Hendrickson, B.A., Kolda, T.G.: Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing. SIAM Journal of Scientific Computing 21(6), 248–272 (2000)
Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1999)
Karypis, G., Schloegel, K., Kumar, V.: ParMeTiS: Parallel Graph Partitioning and Sparse Matrix Ordering Library, Version 3.0. University of Minnesota (2002)
Trifunović, A.: Parallel Algorithms for Hypergraph Partitioning. PhD thesis, Imperial College London (February 2006)
Trifunović, A., Knottenbelt, W.J.: A Parallel Algorithm for Multilevel k-way Hypergraph Partitioning. In: Proc. 3rd International Symposium on Parallel and Distributed Computing, University College Cork, Ireland, July 2004, pp. 114–121 (2004)
Trifunović, A., Knottenbelt, W.J.: Towards a Parallel Disk-Based Algorithm for Multilevel k-way Hypergraph Partitioning. In: Proc. 5th Workshop on Parallel and Distributed Scientific and Engineering Computing (April 2004)
Uçar, B., Aykanat, C.: Encapsulating Multiple Communication-Cost Metrics in Partitioning Sparse Rectangular Matrices for Parallel Matrix–Vector Multiples. SIAM Journal on Scientific Computing 25(6), 1837–1859 (2004)
Vastenhouw, B., Bisseling, R.H.: A Two-Dimensional Data Distribution Method for Parallel Sparse Matrix–Vector Multiplication. SIAM Review 47(1), 67–95 (2005)
Walshaw, C., Cross, M., Everett, M.G.: Parallel dynamic graph partitioning for adaptive unstructured meshes. J. Parallel Distrib. Comput. 47(2), 102–108 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Trifunović, A., Knottenbelt, W. (2006). A General Graph Model for Representing Exact Communication Volume in Parallel Sparse Matrix–Vector Multiplication. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds) Computer and Information Sciences – ISCIS 2006. ISCIS 2006. Lecture Notes in Computer Science, vol 4263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11902140_85
Download citation
DOI: https://doi.org/10.1007/11902140_85
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47242-1
Online ISBN: 978-3-540-47243-8
eBook Packages: Computer ScienceComputer Science (R0)