Skip to main content

A General Graph Model for Representing Exact Communication Volume in Parallel Sparse Matrix–Vector Multiplication

  • Conference paper
Computer and Information Sciences – ISCIS 2006 (ISCIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4263))

Included in the following conference series:

  • 1155 Accesses

Abstract

In this paper, we present a new graph model of sparse matrix decomposition for parallel sparse matrix–vector multiplication. Our model differs from previous graph-based approaches in two main respects. Firstly, our model is based on edge colouring rather than vertex partitioning. Secondly, our model is able to correctly quantify and minimise the total communication volume of the parallel sparse matrix–vector multiplication while maintaining the computational load balance across the processors. We show that our graph edge colouring model is equivalent to the fine-grained hypergraph partitioning-based sparse matrix decomposition model. We conjecture that the existence of such a graph model should lead to faster serial and parallel sparse matrix decomposition heuristics and associated tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bisseling, R.H.: Personal communication (January 2006)

    Google Scholar 

  2. Bisseling, R.H., Meesen, W.: Communication balancing in parallel sparse matrix–vector multiplication. Electronic Transactions on Numerical Analysis: Special Volume on Combinatorial Scientific Computing 21, 47–65 (2005)

    MATH  MathSciNet  Google Scholar 

  3. Bollobás, B.: Combinatorics. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  4. Çatalyürek, U.V., Aykanat, C.: Hypergraph Partitioning-based Decomposition for Parallel Sparse–Matrix Vector Multiplication. IEEE Transactions on Parallel and Distributed Systems 10(7), 673–693 (1999)

    Article  Google Scholar 

  5. Çatalyürek, U.V., Aykanat, C.: A fine-grain hypergraph model for 2D decomposition of sparse matrices. In: Proc. 8th International Workshop on Solving Irregularly Structured Problems in Parallel, San Francisco, USA (April 2001)

    Google Scholar 

  6. Çatalyürek, U.V., Aykanat, C.: PaToH: Partitioning Tool for Hypergraphs, Version 3.0 (2001)

    Google Scholar 

  7. Devine, K.D., Boman, E.G., Heaphy, R.T., Bisseling, R.H., Çatalyürek, U.V.: Parallel hypergraph partitioning for scientific computing. In: Proc. 20th IEEE International Parallel and Distributed Processing Symposium (2006)

    Google Scholar 

  8. Devine, K.D., Boman, E.G., Heaphy, R.T., Hendrickson, B.A., Teresco, J.D., Faik, J., Flaherty, J.E., Gervasio, L.G.: New Challenges in Dynamic Load Balancing. Applied Numerical Mathematics 52(2–3), 133–152 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fiduccia, C.M., Mattheyses, R.M.: A Linear Time Heuristic For Improving Network Partitions. In: Proc. 19th IEEE Design Automation Conference, pp. 175–181 (1982)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  11. Hendrickson, B.A.: Graph Partitioning and Parallel Solvers: Has the Emperor No Clothes. In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 218–225. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Hendrickson, B.A., Kolda, T.G.: Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing. SIAM Journal of Scientific Computing 21(6), 248–272 (2000)

    Article  MathSciNet  Google Scholar 

  13. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karypis, G., Schloegel, K., Kumar, V.: ParMeTiS: Parallel Graph Partitioning and Sparse Matrix Ordering Library, Version 3.0. University of Minnesota (2002)

    Google Scholar 

  15. Trifunović, A.: Parallel Algorithms for Hypergraph Partitioning. PhD thesis, Imperial College London (February 2006)

    Google Scholar 

  16. Trifunović, A., Knottenbelt, W.J.: A Parallel Algorithm for Multilevel k-way Hypergraph Partitioning. In: Proc. 3rd International Symposium on Parallel and Distributed Computing, University College Cork, Ireland, July 2004, pp. 114–121 (2004)

    Google Scholar 

  17. Trifunović, A., Knottenbelt, W.J.: Towards a Parallel Disk-Based Algorithm for Multilevel k-way Hypergraph Partitioning. In: Proc. 5th Workshop on Parallel and Distributed Scientific and Engineering Computing (April 2004)

    Google Scholar 

  18. Uçar, B., Aykanat, C.: Encapsulating Multiple Communication-Cost Metrics in Partitioning Sparse Rectangular Matrices for Parallel Matrix–Vector Multiples. SIAM Journal on Scientific Computing 25(6), 1837–1859 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vastenhouw, B., Bisseling, R.H.: A Two-Dimensional Data Distribution Method for Parallel Sparse Matrix–Vector Multiplication. SIAM Review 47(1), 67–95 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Walshaw, C., Cross, M., Everett, M.G.: Parallel dynamic graph partitioning for adaptive unstructured meshes. J. Parallel Distrib. Comput. 47(2), 102–108 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trifunović, A., Knottenbelt, W. (2006). A General Graph Model for Representing Exact Communication Volume in Parallel Sparse Matrix–Vector Multiplication. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds) Computer and Information Sciences – ISCIS 2006. ISCIS 2006. Lecture Notes in Computer Science, vol 4263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11902140_85

Download citation

  • DOI: https://doi.org/10.1007/11902140_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47242-1

  • Online ISBN: 978-3-540-47243-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics