Skip to main content

From Logical Regulatory Graphs to Standard Petri Nets: Dynamical Roles and Functionality of Feedback Circuits

  • Conference paper
Transactions on Computational Systems Biology VII

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 4230))

Abstract

Logical modelling and Petri nets constitute two complementary approaches for the dynamical modelling of biological regulatory networks. Leaning on a translation of logical models into standard Petri nets, we propose a formalisation of the notion of circuit functionality in the Petri net framework. This approach is illustrated with the modelling and analysis of a molecular regulatory network involved in the control of Th-lymphocyte differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnello, D., Lankford, C.S.R., Bream, J., Morinobu, A., Gadina, M., O’Shea, J., Frucht, D.M.: Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J. Clin. Immunol. 23, 147–161 (2003)

    Article  Google Scholar 

  2. Alla, H., David, R.: Continuous and hybrid petri nets. Journal of Circuits, Systems, and Computers 8-1, 159–188 (1998)

    Article  MathSciNet  Google Scholar 

  3. Aracena, J.: Modèles mathématiques discrets associés à des systèmes biologiques. Application aux réseaux de régulation génétiques. Thèse de Doctorat Spécialité Mathématiques Appliquées, Université Joseph Fourier, Grenoble (2001)

    Google Scholar 

  4. Bergmann, C., Van Hemmen, J.L., Segel, L.A.: Th1 or Th2: how an appropriate T helper response can be made. Bull. Math. Biol. 63, 405–430 (2001)

    Article  Google Scholar 

  5. Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Computers C-35(8), 677–691 (1986)

    Article  Google Scholar 

  6. Chen, M., Hofestaedt, R.: Quantitative Petri net model of gene regulated metabolic networks in the cell. Silico Biology 3, 29 (2003)

    Google Scholar 

  7. Chaouiya, C., Remy, E., Thieffry, D.: Petri Net Modelling of Biological Regulatory Networks, IML Research report 2005-20 (2005), Accessible at: http://iml.univ-mrs.fr/editions/preprint2005/preprint2005.html

  8. Chaouiya, C., Remy, E., Ruet, P., Thieffry, D.: Qualitative Modelling of Genetic Networks: From Logical Regulatory Graphs to Standard Petri Nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 137–156. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative analysis of regulatory graphs: a computational tool based on a discrete formal framework. In: Benvenuti, L., De Santis, A., Farina, L. (eds.) POSTA 2003. LNCIS, vol. 294, pp. 119–126. Springer, Heidelberg (2003)

    Google Scholar 

  10. de Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. J. Comp. Biol. 9, 67–103 (2002)

    Article  Google Scholar 

  11. Doi, A., Fujita, S., Matsuno, H., Nagasaki, M., Miyano, S.: Constructing biological pathway models with hybrid functional Petri nets. Silico Biology 4, 23 (2004)

    Google Scholar 

  12. Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)

    Article  Google Scholar 

  13. Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc. Natl. Acad. Sci. USA. 95, 6750–6755 (1998)

    Article  Google Scholar 

  14. Gouzé, J.L.: Positive and negative circuits in dynamical systems. J. Biol. Syst. 6, 11–15 (1998)

    Article  MATH  Google Scholar 

  15. Heiner, M., Koch, I.: Petri Net Based Model Validation in Systems Biology. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 216–237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Hofestädt, R., Thelen, S.: Quantitative Modeling of Biochemical Networks. Silico Biology 1, 39–53 (1998)

    Google Scholar 

  17. Krueger, G.R.H., Marshall, G.R., Junker, U., Schroeder, H., Buja, L.M., Wang, G.: Growth factors, cytokines, chemokines and neuropeptides in the modeling of T-cells. Vivo 16, 365–386 (2002)

    Google Scholar 

  18. Küffner, R., Zimmer, R., Lengauer, T.: Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics 9, 925–936 (2000)

    Google Scholar 

  19. Larrinaga, A., Naldi, A., Sánchez, L., Thieffry, D., Chaouiya, C.: GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. BioSystems (in press)

    Google Scholar 

  20. Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways representation and simulation on hybrid functional Petri net. Silico Biology 3, 32 (2003)

    Google Scholar 

  21. Mendoza L.: A network model for the control of the differentiation process in Th cells. BioSystems (in press)

    Google Scholar 

  22. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77, 541–580 (1989)

    Article  Google Scholar 

  23. Murphy, K.M., Reiner, S.L.: The lineage decisions on helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002)

    Article  Google Scholar 

  24. Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L.: Qualitative analysis of biochemical reaction systems. Comput. Biol. Med. 26, 9–24 (1996)

    Article  Google Scholar 

  25. Remy, E., Mossé, B., Chaouiya, C., Thieffry, D.: A description of dynamical graphs associated to elementary regulatory circuits. Bioinformatics 19, ii172–178 (2003)

    Article  Google Scholar 

  26. Remy, E., Ruet, P., Thieffry, D.: Graphic requirement for multistability and attractive cycles in a Boolean dynamical framework, IML Research report 2005-08 (2005), Accessible at: http://iml.univ-mrs.fr/~ruet/papiers.html

  27. Remy, É., Ruet, P.: On differentiation and homeostatic behaviours of Boolean dynamical systems. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 153–162. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Reisig, W.: Petri Nets. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  29. Snoussi, E.H., Thomas, R.: Logical identification of all steady states: the concept of feedback loop characteristic states. Bul. Math. Biol. 55, 973–991 (1993)

    MATH  Google Scholar 

  30. Snoussi, E.H.: Necessary conditions for multistationatity and stable periodicity. J. Biol. Syst. 6, 3–9 (1998)

    Article  MATH  Google Scholar 

  31. Soulé, C.: Graphic requirements for multistationarity. ComPlexUs 1, 123–133 (2003)

    Article  Google Scholar 

  32. Thomas, R.: The role of feedback circuits: positive feedback circuits are a necessary conditions for positive eigenvalues of the Jacobian matrix. Ber. Besenges. Phys. Chem. 98, 1148–1151 (1994)

    Google Scholar 

  33. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks–I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276 (1995)

    MATH  Google Scholar 

  34. Weisbuch, G., De Boer, R.J., Perelson, A.S.: Localized memories in idiotypic networks. J. Theor. Biol. 146, 483–499 (1990)

    Article  Google Scholar 

  35. Yates, A., Bergman, C., Van Hemmen, J.L., Stark, J., Callard, R.: Cytokine-mediated regulation of helper T cell populations. J. Theor. Biol. 206, 539–560 (2000)

    Article  Google Scholar 

  36. Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on Petri net theory. Silico Biology 3, 29 (2003)

    Google Scholar 

  37. INA: Integrated Net Analyzer, http://www.informatik.hu-berlin.de/lehrstuehle/automaten/ina/

  38. GINsim: Gene Interaction Network simulation, http://www.esil.univ-mrs.fr/~chaouiya/GINsim

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Remy, E., Ruet, P., Mendoza, L., Thieffry, D., Chaouiya, C. (2006). From Logical Regulatory Graphs to Standard Petri Nets: Dynamical Roles and Functionality of Feedback Circuits. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds) Transactions on Computational Systems Biology VII. Lecture Notes in Computer Science(), vol 4230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11905455_3

Download citation

  • DOI: https://doi.org/10.1007/11905455_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48837-8

  • Online ISBN: 978-3-540-48839-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics