Skip to main content

Adapting Biochemical Kripke Structures for Distributed Model Checking

  • Conference paper
Transactions on Computational Systems Biology VII

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 4230))

Abstract

In this paper, we use some observations on the nature of biochemical reactions to derive interesting properties of qualitative biochemical Kripke structures. We show that these characteristics make Kripke structures of biochemical pathways suitable for assumption based distributed model checking. The number of chemical species participating in a biochemical reaction is usually bounded by a small constant. This observation is used to show that the Hamming distance between adjacent states of a qualitative biochemical Kripke structures is bounded. We call such structures as Bounded Hamming Distance Kripke structures (BHDKS). We, then, argue the suitability of assumption based distributed model checking for BHDKS by constructively deriving worst case upper bounds on the size of the fragments of the state space that need to be stored at each distributed node. We also show that the distributed state space can be mapped naturally to a hypercube based distributed architecture. We support our results by experimental evaluation over benchmarks and biochemical pathways from public databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brim, L., Yorav, K., Žídková, J.: Assumption-based distribution of CTL model checking. International Journal on Software Tools for Technology Transfer (STTT) 7(1), 61–73 (2005)

    Google Scholar 

  2. Brim, L., Žídková, J., Yorav, K.: Using assumptions to distribute CTL model checking. Electr. Notes Theor. Comput. Sci. 68(4) (2002)

    Google Scholar 

  3. Burch, J.R., Clark, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. In: Mitchell, J.C. (ed.) Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science, Philadelphia, PA, pp. 428–439. IEEE Computer Society Press, Los Alamitos (1990)

    Chapter  Google Scholar 

  4. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325(1), 25–44 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine biocham. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)

    Google Scholar 

  8. Dwyer, M.B. (ed.): SPIN 2001. LNCS, vol. 2057. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  9. Karp, P.D., Riley, M., Paley, S.M., Pellegrini-Toole, A.: Ecocyc: an encyclopedia of escherichia coli genes and metabolism. Nucleic Acids Research 24(1), 32–39 (1996)

    Article  Google Scholar 

  10. Karypis, G., Selvakkumaran, N.: Multi-objective hypergraph partitioning algorithms for cut and maximum subdomain degree minimization. In: ICCAD 2003: Proceedings of the 2003 IEEE/ACM international conference on Computer-aided design, Washington, DC, USA, August 18, 2003, p. 726. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  11. Krieger, C.J., Zhang, P., Mueller, L.A., Wang, A., Paley, S.M., Arnaud, M., Pick, J., Rhee, S.Y., Karp, P.D.: Metacyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Research 32(Database-Issue), 438–442 (2004)

    Article  Google Scholar 

  12. Soliman, S., Fages, F.: Cmbslib: A library for comparing formalisms and models of biological systems. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 231–235. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jha, S., Shyamasundar, R.K. (2006). Adapting Biochemical Kripke Structures for Distributed Model Checking. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds) Transactions on Computational Systems Biology VII. Lecture Notes in Computer Science(), vol 4230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11905455_6

Download citation

  • DOI: https://doi.org/10.1007/11905455_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48837-8

  • Online ISBN: 978-3-540-48839-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics