Skip to main content

On Differentiation and Homeostatic Behaviours of Boolean Dynamical Systems

  • Conference paper
Transactions on Computational Systems Biology VII

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 4230))

Abstract

We study rules proposed by the biologist R. Thomas relating the structure of a concurrent system of interacting genes (represented by a signed directed graph called a regulatory graph) with its dynamical properties. We prove that the results in [10] are stable under projection, and this enables us to relax the assumptions under which they are valid. More precisely, we relate here the presence of a positive (resp. negative) circuit in a regulatory graph to a more general form of biological differentiation (resp. of homeostasis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aracena, J.: Modèles mathématiques discrets associés à des systèmes biologiques. Application aux réseaux de régulation génétiques. Thèse de doctorat, Université Joseph Fourier, Grenoble (2001)

    Google Scholar 

  2. Chaouiya, C., Remy, É., Ruet, P., Thieffry, D.: Qualitative modelling of genetic networks: from logical regulatory graphs to standard Petri nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 137–156. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Danos, V., Laneve, C.: Graphs for core molecular biology. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 34–46. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Gouzé, J.-L.: Positive and negative circuits in dynamical systems. Journal of Biological Systems 6, 11–15 (1998)

    Article  MATH  Google Scholar 

  5. Karmakar, R., Bose, I.: Graded and binary responses in stochastic gene expression. Technical report, arXiv:q-bio. OT/0411012 (2004)

    Google Scholar 

  6. Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. In: Proceedings of the National Academy of Sciences of the United States of America (2004)

    Google Scholar 

  7. Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. Journal of Cell Biology (2004)

    Google Scholar 

  8. Plahte, E., Mestl, T., Omholt, S.W.: Feedback loops, stability and multistationarity in dynamical systems. Journal Biological Systems 3, 409–413 (1995)

    Article  Google Scholar 

  9. Remy, É., Ruet, P., Mendoza, L., Thieffry, D., Chaouiya, C.: From logical regulatory graphs to standard petri nets: Dynamical roles and functionality of feedback circuits. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 56–72. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Remy, É., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework (Under review, 2005); Prépublication Institut de Mathématiques de Luminy 2005-2008, Available at: http://iml.univ-mrs.fr/~ruet/papiers.html

  11. Robert, F.: Discrete iterations: a metric study. Series in Computational Mathematics, vol. 6. Springer, Heidelberg (1986)

    MATH  Google Scholar 

  12. Robert, F.: Les systèmes dynamiques discrets. Mathématiques et Applications, vol. 19. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  13. Shih, M.-H., Dong, J.-L.: A combinatorial analogue of the Jacobian problem in automata networks. Advances in Applied Mathematics 34(1), 30–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Snoussi, E.H.: Necessary conditions for multistationarity and stable periodicity. Journal of Biological Systems 6, 3–9 (1998)

    Article  MATH  Google Scholar 

  15. Soulé, C.: Graphic requirements for multistationarity. ComPlexUs 1, 123–133 (2003)

    Article  Google Scholar 

  16. Soulé, C.: Mathematical approaches to gene regulation and differentiation (manuscript, 2005)

    Google Scholar 

  17. Thomas, R.: On the relation between the logical structure of systems and their ability to generate multiple steady states and sustained oscillations. Series in Synergetics, vol. 9, pp. 180–193. Springer, Heidelberg (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Remy, É., Ruet, P. (2006). On Differentiation and Homeostatic Behaviours of Boolean Dynamical Systems. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds) Transactions on Computational Systems Biology VII. Lecture Notes in Computer Science(), vol 4230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11905455_8

Download citation

  • DOI: https://doi.org/10.1007/11905455_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48837-8

  • Online ISBN: 978-3-540-48839-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics