Abstract
In ubiquitous environments, context-aware agents have been developed to obtain, understand and share local contexts with each other so that the environments could be integrated seamlessly. Context sharing among agents should be made privacy-conscious. Privacy preferences are generally specified to regulate the exchange of the contexts, where who have rights to have what contexts are designated. However, the released contexts could be used to derive those unreleased. To date, there have been very few inference control mechanisms specifically tailored to context management in ubiquitous environments, especially when the environments are uncertain. In this paper, we present a Bayesian network-based inference control method to prevent privacy-sensitive contexts from being derived from those released in ubiquitous environments. We use Bayesian networks because the contexts of a user are generally uncertain, especially from somebody else’s point of view.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. Knowledge Engineering Review, Special Issue on Ontologies for Distributed Systems 18(3), 197–207 (2004)
Khedr, M., Karmouch, A.: Negotiating context information in context-aware systems. IEEE Intelligent Systems 19(6), 21–29 (2004)
Khedr, M., Karmouch, A.: ACAI: Agent-based context-aware infrastructure for spontaneous applications. Journal of Network and Computer Applications 28(1), 19–44 (2005)
Davies, N., Gellersen, H.W.: Beyond prototypes: Challenges in deploying ubiquitous systems. IEEE Pervasive Computing 1(1), 26–35 (2002)
Dey, A.: Understanding and using context. Personal and Ubiquitous Computing 5(1), 4–7 (2001)
Warren, S., Brandeis, L.: The right to privacy. Harvard Law Review 4, 193–220 (1890)
An, X., Jutla, D.: A survey of privacy technologies. Technical report, Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada (2005)
Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: The platform for privacy preferences 1.0 (P3P 1.0) specification. Technical report, W3C Recommendation (2002), http://www.w3.org/TR/P3P
Cranor, L., Langheinrich, M., Marchiori, M.: A P3P preference exchange language 1.0 (APPEL 1.0). Technical report, W3C Working Draft (2002), http://www.w3.org/TR/P3P-preference
Clark, J., DeRose, S.: XML Path language (XPath) Version 1.0. Technical report, W3C Recommendation (1999), http://www.w3.org/TR/xpath
Agrawal, R., Kieman, J., Srikant, R., Xu, Y.: An XPath-based preference language for P3P. In: Proceedings of the 12th International WWW Conference (WWW 2003), Budapest, Hungary (May 2003)
McBride, B., Wenning, R., Cranor, L.: A RDF schema for P3P. Technical report, W3C Note (2002), http://www.w3.org/TR/p3p-rdfschema
Hogben, G.: P3P using the semantic web (OWL ontology, RDF policy and RDQL rules). Technical report, W3C Working Group Note (2004), http://www.w3.org/P3P/2004/040920_p3p-sw.html
Hogben, G.: Describing the P3P base data schema using OWL. In: Kagal, L., Finin, T., Hendler, J. (eds.) Policy Management for the Web (PM4W): Proceedings of the 14th World Wide Web Conference (WWW’05) Workshop, Chiba, Japan, pp. 44–51 (2005)
Gandon, F.L., Sadeh, N.M.: Semantic web technologies to reconcile privacy and context awareness. Journal of Web Semantics 1(3) (2005)
Kagal, L., Finin, T., Joshi, A.: A policy language for pervasive systems. In: Proceedings of the 4th IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY 2003), Lake Como (2003)
Kagal, L., Finin, T., Joshi, A.: Declarative policies for describing web services capabilities and constraints. In: Proceedings of the W3C Workshop on Constraints and Capabilities for Web Services, Redwood Shores, CA, USA (2004)
Kolari, P., Ding, L., Ganjugunte, S., Kagal, L., Joshi, A., Finin, T.: Enhancing web privacy protection through declarative policies. In: Sahai, A., Winsborough, W.H. (eds.) Proceedings of the 6th IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY 2005), Stockholm, Sweden, pp. 57–66. IEEE Computer Society, Los Alamitos (2005)
Fellegi, I.: On the question of statistical confidentiality. Journal of American Statistical Association 67(337), 7–18 (1972)
Denning, D.: Secure statistical databases with random sample queries. ACM Transactions on Database Systems 5(3), 291–315 (1980)
Staddon, J.: Dynamic inference control. In: Zaki, M.J., Aggarwal, C.C. (eds.) Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD 2003), pp. 94–100. ACM Press, New York (2003)
Shoshani, A.: Statistical databases: Characteristics, problems and some solutions. In: Proceedings of the 8th International Conference on Very Large Databases (VLDB 1982), Mexico City, Mexico, pp. 208–213 (1982)
Dey, A., Mankoff, J., Abowd, G., Carter, S.: Distributed mediation of ambiguous context in aware environments. In: Beaudouin-Lafon, M. (ed.) Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology (UIST 2002), Paris, France, pp. 121–130. ACM Press, New York (2002)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, San Francisco (1988)
Wong, W.-K., Cooper, G., Wagner, M.: Bayesian network anomaly pattern detection for disease outbreaks. In: Proceedings of the 20th International Conference on Machine Learning (ICML-2003), Washington DC, USA (2003)
Johansen, K., Lee, S.: Network security: Bayesian network intrusion detection. Technical report, Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA (2003)
Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian event classification for intrusion detection. In: Proceedings of the 19th Annual Computer Security Applications Conference, LasVegas, Nevada, USA (2003)
Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
Nute, D.: Defeasible reasoning. In: Proceedings of the 20th Hawaii International Conference on System Science, Kailua-Kona, HI, USA, pp. 470–477. IEEE Press, Los Alamitos (1987)
Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)
McCarthy, J.: Circumscription | a form of non-monotonic reasoning. Artificial Intelligence 13, 27–39 (1980)
Moore, R.C.: Semantical considerations on non-monotonic logic. Artificial Intelligence 28, 75–94 (1985)
Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annual Mathematical Statistics 38, 325–339 (1967)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
Dubois, D., Lang, J., Prade, H.: Automated reasoning using possibilistic logic: semantics, belief revision, and variable certainty weights. IEEE Transactions on Knowledge and Data Engineering 6(1), 64–71 (1994)
Neapolitan, R.E.: Probabilistic Reasoning in Expert Systems: Theory and Algorithms. John Wiley & Sons, Inc., New York (1990)
Jajodia, S., Sandhu, R.: Polyinstantiation integrity in multilevel relations. In: Proceedings of the 1990 IEEE Symposium on Security and Privacy, pp. 104–115. IEEE Computer Society, Los Alamitos (1990)
Cuppens, F., Gabillon, A.: Logical foundations of multilevel databases. Data & Knowledge Engineering 29(3), 199–222 (1999)
Denning, D.E., Schlörer, J.: Inference control for statistical databases. IEEE Computer 16(7), 69–82 (1983)
Yip, R.W., Levitt, K.N.: Data level inference detection in database systems. In: Proceedings of the 11th IEEE Computer Security Foundations, Rockport, MA, pp. 179–189 (1998)
Denning, D.E., Denning, P.J., Schwartz, M.D.: The tracker: a threat to statistical database security. ACM Transactions on Database Systems 4(1), 76–96 (1979)
Dobkin, D., Jones, A., Lipton, R.: Secure databases: Protection against user influence. ACM Transactions on Database Systems 4(1), 97–106 (1979)
Cox, L.H.: Suppression methodology and statistical disclosure control. Journal of the American Statistical Association 75(370), 377–385 (1980)
Chin, F.Y., Özsoyoglu, G.: Auditing and inference control in statistical databases. IEEE Transactions on Software Engineering 8(6), 574–582 (1982)
Kleinberg, J., Papadimitriou, C., Raghavan, P.: Auditing boolean attributes. In: Proceedings of the 19th ACM SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2000), Dallas, TX, pp. 86–91. ACM Press, New York (2000)
Traub, J.F., Yemini, Y., Woznaikowski, H.: The statistical security of a statistical database. ACM Transactions on Database Systems 9(4), 672–679 (1984)
Beck, L.L.: A security mechanism for statistical databases. ACM Transactions on Database Systems 5(3), 316–338 (1980)
Reiss, S.P.: Practical data-swapping: The first steps. ACM Transactions on Database Systems 9(1), 20–37 (1984)
Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data & Knowledge Engineering 38, 199–222 (2001)
Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without revealing secrets. ACM Transactions on Database Systems 8(1), 41–59 (1983)
Stickel, M.E.: Elimination of inference channels by optimal upgrading. In: Proceedings of the 1994 IEEE Symposium on Security and Privacy, Oakland, CA, pp. 168–174. IEEE Computer Society, Los Alamitos (1994)
Biskup, J.: For unknown secrecies refusal is better than lying. Data & Knowledge Engineering 33, 1–24 (2000)
Biskup, J., Bonatti, P.: Controlled query evaluation for known policies by combing lying and refusal. Annals of Mathematics and Artificial Intelligence 40(1-2), 37–62 (2004)
Jensen, F.V.: An introduction to Bayesian networks. UCL Press, London, UK (1996)
Castillo, E., Gutierrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network Models. Springer, Heidelberg (1997)
Heckerman, D.: A tutorial on learning with Bayesian networks. Technical report, Microsoft Research, MSR-TR-95-06 (1995)
Tong, S., Koller, D.: Active learning for parameter estimation in Bayesian networks. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13 (NIPS 2000). MIT Press, Cambridge (2000)
Cheng, J., Greiner, R.: Learning Bayesian belief network classifiers: algorithms and systems. In: Proceedings of the 14th Canadian Conference on Artificial Intelligence, pp. 141–151. Springer, Heidelberg (2001)
Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall, Englewood Cliffs (2003)
Meng, D., Sivakumar, K., Kargupta, H.: Privacy sensitive Bayesian network parameter learning. In: Proceedings of the 4th IEEE International Conference on Data Mining (ICDM 2004), Brighton, UK, pp. 427–430. IEEE Computer Society Press, Los Alamitos (2004)
D’Ambrosio, B.: Inference in Bayesian networks. AI Magazine 20(2), 21–36 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
An, X., Jutla, D., Cercone, N. (2006). Auditing and Inference Control for Privacy Preservation in Uncertain Environments. In: Havinga, P., Lijding, M., Meratnia, N., Wegdam, M. (eds) Smart Sensing and Context. EuroSSC 2006. Lecture Notes in Computer Science, vol 4272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11907503_12
Download citation
DOI: https://doi.org/10.1007/11907503_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47842-3
Online ISBN: 978-3-540-47845-4
eBook Packages: Computer ScienceComputer Science (R0)