Abstract
Many researchers study rough sets from the point of view of description of the rough set pairs(a rough set pair is also called a rough set), i.e. <lower approximation set, upper approximation set>. Comer [4] showed that all the rough sets in an approximation space constructed a regular double Stone algebra. The constructed algebra is called the rough double Stone algebra in this paper. Pagliani [19] interpreted Rough Set System (all the rough sets in an approximation space in disjoint representation) as a Nelson algebra. The constructed Nelson algebra from an approximation space is called the rough Nelson algebra in this paper. It is showed that a rough double Stone algebra is a Brouwer-Zadeh lattice, and a rough Nelson algebra is a Brouwer-Zadeh lattice also.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fundamenta Informaticae 28, 211–221 (1996)
Cattaneo, G., Ciucci, D.: Heyting Wajsberg Algebras as an Abstract Environment Linking Fuzzy and Rough Sets. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 77–84. Springer, Heidelberg (2002)
Cattaneo, G., Giuntini, R., Pilla, R.: BZMVdM algebras and stonian MV-algebras. Fuzzy Sets and Systems 108, 201–222 (1999)
Comer, S.: On connections between information systems, rough sets and algebraic logic. In: Algebraic methods in logic and computer science, pp. 117–124. Banach Center Publications (1993)
Dai, J.H.: Generalization of rough set theory using molecular lattices. Chinese Journal of Computers (in Chinese) 27, 1436–1440 (2004)
Dai, J.-H.: Structure of rough approximations based on molecular lattices. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS, vol. 3066, pp. 69–77. Springer, Heidelberg (2004)
Dai, J.-H.: Logic for Rough Sets with Rough Double Stone Algebraic Semantics. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS, vol. 3641, pp. 141–148. Springer, Heidelberg (2005)
Dai, J.H., Chen, W.D., Pan, Y.H.: A minimal axiom group of rough set based on Quasi-ordering. Journal of Zhejiang University SCIENCE 7, 810–815 (2004)
Dai, J.H., Chen, W.D., Pan, Y.H.: Sequent caculus system for rough sets based on rough Stone algebras. In: Proc. of IEEE International Conference on Granular Computing (IEEE GrC 2005), pp. 423–426. IEEE Press, New Jersy (2005)
Dai, J.H., Chen, W.D., Pan, Y.H.: Rough Sets and Brouwer-Zadeh Lattices. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS, vol. 4062, pp. 200–207. Springer, Heidelberg (2006)
Dai, J.H., Pan, Y.H.: On rough algebras (in Chinese). Journal of Software 16, 1197–1204 (2005)
Düntsch, I.: Rough relation algebras. Fundamenta Informace 21, 321–331 (1994)
Düntsch, I.: Rough sets and algebra of relations. In: Orlowska, E. (ed.) Incomplete information: Rough set analysis, pp. 95–108. Physica-Verlag, Herdberg (1998)
Gehrke, M., Walker, E.: On the structure of rough sets. Bulletin of the Polish Academy of Sciences: Mathematics 40, 235–255 (1992)
Iturrioz, L.: Rough sets and 3-valued structures. In: Orlowska, E. (ed.) Logic at work, pp. 596–603. Springer, Heidelberg (1998)
Iwiński, T.B.: Algebraic approach to rough sets. Bulletin of the Polish Academy of Sciences: Mathematics 35, 673–683 (1987)
Järvinen, J.: On the structure of rough approximations. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS, vol. 2475, pp. 123–130. Springer, Heidelberg (2002)
Lin, T.Y., Liu, Q.: Rough approximate operators: Axiomatic rough set theory. In: Ziarko, W.P. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 256–260. Springer, Berlin (1994)
Pagliani, P.: Rough sets and Nelson algebras. Fundamenta Informaticae 27, 205–219 (1996)
Pagliani, P.: Rough set theory and logic-algebraic structures. In: Orlowska, E. (ed.) Incomplete information: Rough set analysis, pp. 109–190. Physica-Verlag, Heidelberg (1998)
Pawlak, Z.: Rough Sets-Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pomykala, J., Pomykala, J.A.: The Stone algebra of rough sets. Bulletin of the Polish Academy of Sciences: Mathematics 36, 495–508 (1988)
Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109, 21–47 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dai, JH., Lv, H., Chen, W., Pan, Y. (2006). Two Kinds of Rough Algebras and Brouwer-Zadeh Lattices. In: Greco, S., et al. Rough Sets and Current Trends in Computing. RSCTC 2006. Lecture Notes in Computer Science(), vol 4259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908029_12
Download citation
DOI: https://doi.org/10.1007/11908029_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47693-1
Online ISBN: 978-3-540-49842-1
eBook Packages: Computer ScienceComputer Science (R0)