Skip to main content

Applying Rough Sets to Data Tables Containing Imprecise Information Under Probabilistic Interpretation

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4259))

Included in the following conference series:

  • 1238 Accesses

Abstract

Rough sets are applied to data tables containing imprecise information under probabilistic interpretation. A family of weighted equivalence classes is obtained, in which each equivalence class is accompanied by the probabilistic degree to which it is an actual one. By using the family of weighted equivalence classes we can derive a lower approximation and an upper approximation. The lower approximation and the upper approximation coincide with those obtained from methods of possible worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Greco, S., Matarazzo, B., SÅ‚owiÅ„ski, R.: Handling Missing Values in Rough Set Analysis of Multi-attribute and Multi-criteria Decision Problems. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 146–157. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Greco, S., Matarazzo, B., Slowinski, R.: Rough Sets Theory for Multicriteria Decision Analysis. European Journal of Operational Research 129, 1–47 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Grzymala-Busse, J.W.: On the Unknown Attribute Values in Learning from Examples. In: RaÅ›, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 368–377. Springer, Heidelberg (1991)

    Google Scholar 

  4. Imielinski, T.: Incomplete Information in Logical Databases. Data Engineering 12, 93–104 (1989)

    Google Scholar 

  5. Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases. Journal of the ACM 31(4), 761–791 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kryszkiewicz, M.: Rough Set Approach to Incomplete Information Systems. Information Sciences 112, 39–49 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kryszkiewicz, M.: Properties of Incomplete Information Systems in the framework of Rough Sets. In: Polkowski, L., Skowron, A. (eds.) Rough Set in Knowledge Discovery 1: Methodology and Applications, Studies in Fuzziness and Soft Computing, vol. 18, pp. 422–450. Physica Verlag (1998)

    Google Scholar 

  8. Kryszkiewicz, M.: Rules in Incomplete Information Systems. Information Sciences 113, 271–292 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kryszkiewicz, M., RybiÅ„ski, H.: Data Mining in Incomplete Information Systems from Rough Set Perspective. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, Studies in Fuzziness and Soft Computing, vol. 56, pp. 568–580. Physica Verlag (2000)

    Google Scholar 

  10. Nakata, N., Sakai, H.: Rough-set-based approaches to data containing incomplete information: possibility-based cases, pp. 234–241. IOS Press, Amsterdam (2005)

    Google Scholar 

  11. Nakata, M., Sakai, H.: Checking Whether or Not Rough-Set-Based Methods to Incomplete Data Satisfy a Correctness Criterion. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 227–239. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Nakata, M., Sakai, H.: Rough Sets Handling Missing Values Probabilistically Interpreted. In: ÅšlÄ™zak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 325–334. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Nakata, N., Sakai, H.: Rough Sets Approximations to Possibilistic Information. In: Proceedings of FUZZ-IEEE 2006, pp. 804–811. IEEE, Los Alamitos (2006)

    Google Scholar 

  14. Parsons, S.: Current Approaches to Handling Imperfect Information in Data and Knowledge Bases. IEEE Transactions on Knowledge and Data Engineering 8(3), 353–372 (1996)

    Article  MathSciNet  Google Scholar 

  15. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  16. Sakai, H.: Some Issues on Nondeterministic Knowledge Bases with Incomplete and Selective Information. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 424–431. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Sakai, H., Okuma, A.: An Algorithm for Finding Equivalence Relations from Tables with Non-deterministic Information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 64–73. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. SÅ‚owiÅ„ski, R., Stefanowski, J.: Rough Classification in Incomplete Information Systems. Mathematical and Computer Modelling 12(10/11), 1347–1357 (1989)

    Article  Google Scholar 

  19. Stefanowski, J., Tsoukiàs, A.: On the Extension of Rough Sets under Incomplete Information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 73–82. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Stefanowski, J., Tsoukiàs, A.: Incomplete Information Tables and Rough Classification. Computational Intelligence 17(3), 545–566 (2001)

    Article  Google Scholar 

  21. Zimányi, E., Pirotte, A.: Imperfect Information in Relational Databases. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 35–87. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakata, M., Sakai, H. (2006). Applying Rough Sets to Data Tables Containing Imprecise Information Under Probabilistic Interpretation. In: Greco, S., et al. Rough Sets and Current Trends in Computing. RSCTC 2006. Lecture Notes in Computer Science(), vol 4259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908029_24

Download citation

  • DOI: https://doi.org/10.1007/11908029_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47693-1

  • Online ISBN: 978-3-540-49842-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics