Abstract
Rough sets are applied to data tables containing imprecise information under probabilistic interpretation. A family of weighted equivalence classes is obtained, in which each equivalence class is accompanied by the probabilistic degree to which it is an actual one. By using the family of weighted equivalence classes we can derive a lower approximation and an upper approximation. The lower approximation and the upper approximation coincide with those obtained from methods of possible worlds.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Greco, S., Matarazzo, B., Słowiński, R.: Handling Missing Values in Rough Set Analysis of Multi-attribute and Multi-criteria Decision Problems. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 146–157. Springer, Heidelberg (1999)
Greco, S., Matarazzo, B., Slowinski, R.: Rough Sets Theory for Multicriteria Decision Analysis. European Journal of Operational Research 129, 1–47 (2001)
Grzymala-Busse, J.W.: On the Unknown Attribute Values in Learning from Examples. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 368–377. Springer, Heidelberg (1991)
Imielinski, T.: Incomplete Information in Logical Databases. Data Engineering 12, 93–104 (1989)
Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases. Journal of the ACM 31(4), 761–791 (1984)
Kryszkiewicz, M.: Rough Set Approach to Incomplete Information Systems. Information Sciences 112, 39–49 (1998)
Kryszkiewicz, M.: Properties of Incomplete Information Systems in the framework of Rough Sets. In: Polkowski, L., Skowron, A. (eds.) Rough Set in Knowledge Discovery 1: Methodology and Applications, Studies in Fuzziness and Soft Computing, vol. 18, pp. 422–450. Physica Verlag (1998)
Kryszkiewicz, M.: Rules in Incomplete Information Systems. Information Sciences 113, 271–292 (1999)
Kryszkiewicz, M., Rybiński, H.: Data Mining in Incomplete Information Systems from Rough Set Perspective. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, Studies in Fuzziness and Soft Computing, vol. 56, pp. 568–580. Physica Verlag (2000)
Nakata, N., Sakai, H.: Rough-set-based approaches to data containing incomplete information: possibility-based cases, pp. 234–241. IOS Press, Amsterdam (2005)
Nakata, M., Sakai, H.: Checking Whether or Not Rough-Set-Based Methods to Incomplete Data Satisfy a Correctness Criterion. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 227–239. Springer, Heidelberg (2005)
Nakata, M., Sakai, H.: Rough Sets Handling Missing Values Probabilistically Interpreted. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 325–334. Springer, Heidelberg (2005)
Nakata, N., Sakai, H.: Rough Sets Approximations to Possibilistic Information. In: Proceedings of FUZZ-IEEE 2006, pp. 804–811. IEEE, Los Alamitos (2006)
Parsons, S.: Current Approaches to Handling Imperfect Information in Data and Knowledge Bases. IEEE Transactions on Knowledge and Data Engineering 8(3), 353–372 (1996)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Sakai, H.: Some Issues on Nondeterministic Knowledge Bases with Incomplete and Selective Information. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 424–431. Springer, Heidelberg (1998)
Sakai, H., Okuma, A.: An Algorithm for Finding Equivalence Relations from Tables with Non-deterministic Information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 64–73. Springer, Heidelberg (1999)
Słowiński, R., Stefanowski, J.: Rough Classification in Incomplete Information Systems. Mathematical and Computer Modelling 12(10/11), 1347–1357 (1989)
Stefanowski, J., Tsoukià s, A.: On the Extension of Rough Sets under Incomplete Information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 73–82. Springer, Heidelberg (1999)
Stefanowski, J., Tsoukià s, A.: Incomplete Information Tables and Rough Classification. Computational Intelligence 17(3), 545–566 (2001)
Zimányi, E., Pirotte, A.: Imperfect Information in Relational Databases. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 35–87. Kluwer Academic Publishers, Dordrecht (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nakata, M., Sakai, H. (2006). Applying Rough Sets to Data Tables Containing Imprecise Information Under Probabilistic Interpretation. In: Greco, S., et al. Rough Sets and Current Trends in Computing. RSCTC 2006. Lecture Notes in Computer Science(), vol 4259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908029_24
Download citation
DOI: https://doi.org/10.1007/11908029_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47693-1
Online ISBN: 978-3-540-49842-1
eBook Packages: Computer ScienceComputer Science (R0)