Skip to main content

Ontology-Enhanced Association Mining

  • Conference paper
Semantics, Web and Mining (EWMF 2005, KDO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4289))

Included in the following conference series:

Abstract

The roles of ontologies in KDD are potentially manifold. We track them through different phases of the KDD process, from data understanding through task setting to mining result interpretation and sharing over the semantic web. The underlying KDD paradigm is association mining tailored to our 4ft-Miner tool. Experience from two different application domains—medicine and sociology—is presented throughout the paper. Envisaged software support for prior knowledge exploitation via customisation of an existing user-oriented KDD tool is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The Rule Markup Initiative, http://www.ruleml.org/

  2. Unified Medical Language System, http://www.nlm.nih.gov/research/umls/

  3. Almuallim, H., Akiba, Y.A., Kaneda, S.: On Handling Tree-Structured Attributes in Decision Tree Learning. In: Proc. ICML 2005, pp. 12–20. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  4. Aronis, J.M., Provost, F.J., Buchanan, B.G.: Exploiting Background Knowledge in Automated Discovery. In: Proc. SIGKDD 1996 (1996)

    Google Scholar 

  5. Berendt, B., Hotho, A., Stumme, G.: 2nd Workshop on Semantic Web Mining, held at ECML/PKDD-2002, Helsinki (2002), http://km.aifb.uni-karlsruhe.de/semwebmine2002

  6. Cannataro, M., Guzzi, P.H., Mazza, T., Tradigo, G., Veltri, P.: Using Ontologies in PROTEUS for Modeling Proteomics Data Mining Applications. In: From Grid to Healthgrid: Proceedings of Healthgrid 2005, pp. 17–26. IOS Press, Amsterdam (2005)

    Google Scholar 

  7. Brisson, L., Collard, M., Le Brigant, K., Barbry, P.: KTA: A Framework for Integrating Expert Knowledge and Experiment Memory in Transcriptome Analysis. In: International Workshop on Knowledge Discovery and Ontologies, held with ECML/PKDD 2004, Pisa, pp. 85–90 (2004)

    Google Scholar 

  8. Buitelaar, P., Cimiano, P., Magnini, B. (eds.): Ontology Learning and Population. IOS Press, Amsterdam (2005)

    Google Scholar 

  9. Češpivová, H., Rauch, J., Svátek, V., Kejkula, M., Tomečková, M.: Roles of Medical Ontology in Association Mining CRISP-DM Cycle. In: ECML/PKDD04 Workshop on Knowledge Discovery and Ontologies (KDO 2004), Pisa (2004)

    Google Scholar 

  10. Clark, P., Matwin, S.: Using Qualitative Models to Guide Inductive Learning. In: Proceedings of the 1993 International Conference on Machine Learning, pp. 49–56 (1993)

    Google Scholar 

  11. Domingues, M.A., Rezende, S.A.: Using Taxonomies to Facilitate the Analysis of the Association Rules. In: The 2nd International Workshop on Knowledge Discovery and Ontologies, held with ECML/PKDD 2005, Porto, pp. 59–66 (2005)

    Google Scholar 

  12. Gómez-Perez, A., Fernández-Lopez, M., Corcho, O.: Ontological Engineering. Springer, Heidelberg (2004)

    Google Scholar 

  13. Hájek, P., Havránek, T.: Mechanising Hypothesis Formation - Mathematical Foundations for a General Theory. Springer, Heidelberg (1978)

    Google Scholar 

  14. Kováč, M., Kuchař, T., Kuzmin, A.: Ferda, New Visual Environment for Data Mining (in Czech). In: Znalosti 2006, Czecho-Slovak Knowledge Technology Conference, Hradec Králové, pp. 118–129 (2006)

    Google Scholar 

  15. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Submission, May 21 (2004), Online: http://www.w3.org/Submission/SWRL

  16. Lín, V., Rauch, J., Svátek, V.: Content-based Retrieval of Analytic Reports. In: Schroeder, M., Wagner, G. (eds.) Rule Markup Languages for Business Rules on the Semantic Web, Sardinia, pp. 219–224 (2002)

    Google Scholar 

  17. Maedche, A.: Ontology Learning for the Semantic Web. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  18. Núñez, M.: The Use of Background Knowledge in Decision Tree Induction. Machine Learning 6, 231–250 (1991)

    Google Scholar 

  19. Phillips, J., Buchanan, B.G.: Ontology-guided knowledge discovery in databases. In: International Conf. Knowledge Capture, Victoria, Canada (2001)

    Google Scholar 

  20. Ralbovský, M.: Usage of Domain Knowledge for Applications of GUHA Procedures (in Czech), Master thesis, Faculty of Mathematics and Physics, Charles University, Prague (2006)

    Google Scholar 

  21. Rauch, J.: Logical Calculi for Knowledge Discovery in Databases. In: Principles of Data Mining and Knowledge Discovery (PKDD-97). Springer, Heidelberg (1997)

    Google Scholar 

  22. Rauch, J.: Logic of Association Rules. Applied Intelligence 22, 9–28 (2005)

    Article  MATH  Google Scholar 

  23. Rauch, J., Šimunek, M.: An Alternative Approach to Mining Association Rules. In: Lin, T.Y., Ohsuga, S., Liau, C.J., Tsumoto, S. (eds.) Data Mining: Foundations, Methods, and Applications, pp. 211–232. Springer, Heidelberg (2005)

    Google Scholar 

  24. Strossa, P., Černý, Z., Rauch, J.: Reporting Data Mining Results in a Natural Language. In: Lin, T.Y., Ohsuga, S., Liau, C.J., Hu, X. (eds.) Foundations of Data Mining and Knowledge Discovery, pp. 347–362. Springer, Berlin (2005)

    Google Scholar 

  25. Svátek, V.: Exploiting Value Hierarchies in Rule Learning. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 108–117. Springer, Heidelberg (1997)

    Google Scholar 

  26. Svátek, V., Rauch, J., Flek, M.: Ontology-Based Explanation of Discovered Associations in the Domain of Social Reality. In: The 2nd ECML/PKDD Workshop on Knowledge Discovery and Ontologies, Porto, pp. 75–86 (2005)

    Google Scholar 

  27. Thomas, J., Laublet, P., Ganascia, J.G.: A Machine Learning Tool Designed for a Model-Based Knowledge Acquisition Approach. In: Aussenac, N., Boy, G.A., Ganascia, J.-G., Kodratoff, Y., Linster, M., Gaines, B.R. (eds.) EKAW 1993. LNCS, vol. 723, pp. 123–138. Springer, Heidelberg (1993)

    Google Scholar 

  28. van Dompseler, H.J.H., van Someren, M.W.: Using Models of Problem Solving as Bias in Automated Knowledge Acquisition. In: ECAI 1994 - European Conference on Artificial Intelligence, Amsterdam, pp. 503–507 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Svátek, V., Rauch, J., Ralbovský, M. (2006). Ontology-Enhanced Association Mining. In: Ackermann, M., et al. Semantics, Web and Mining. EWMF KDO 2005 2005. Lecture Notes in Computer Science(), vol 4289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908678_11

Download citation

  • DOI: https://doi.org/10.1007/11908678_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47697-9

  • Online ISBN: 978-3-540-47698-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics