Abstract
The main advantage of ring signatures is to ensure anonymity in ad hoc groups. However, since a group manager is not present in ad hoc groups, there is no existing way to identify the signer who is responsible for or benefit from a disputed ring signature. In this paper, we address this issue by formalizing the notion of ad hoc group signature. This new notion bridges the gap between the ring signature and group signature schemes. It enjoys the same advantage of ring signatures to provide anonymity whilst not requiring any group manager. Furthermore, it allows a member in an ad hoc group to provably claim that it has (not) issued the anonymous signature on behalf of the group. We propose the first construction of ad hoc group signatures that is provably secure in the random oracle model under the Strong RSA assumption. Our proposal is very simple and additionally, it produces a constant size signature length and requires constant modular exponentiations. This is to ensure that our scheme is very practical for ad hoc applications where a centralized group manager is not present.
This work is supported by ARC Discovery Grant DP0557493 and the National Natural Science Foundation of China (No. 60403007).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group signatures without random oracles. Cryptology ePrint Archive, Report 2005/385 (2005)
Ateniese, G., de Medeiros, B.: Efficient group signatures without trapdoors. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 246–268. Springer, Heidelberg (2003)
Baric, N., Pfitzman, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)
Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)
Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM-CCS 2004, pp. 168–177. ACM Press, New York (2004)
Boyen, X., Waters, B.: Compact Group Signatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)
Chan, A., Frankel, Y., Tsiounis, Y.: Each Come - Easy Go Divisible Cash. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg (1998)
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)
Camenisch, J., Michels, M.: A group signature scheme based on an RSA variant. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174. Springer, Heidelberg (1998)
Camenisch, J., Stadler, M.: Efficient group signatures for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)
Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)
Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)
Goldschlag, D.M., Stubblebine, S.G.: Publicly verifiable lotterie: applications of delaying functions. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 214–226. Springer, Heidelberg (1998)
Koyama, K., Maurer, U.M., Okamoto, T., Vanstone, S.A.: New public-key schemes based on elliptic curves over the ring Z n . In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 252–266. Springer, Heidelberg (1992)
Komano, Y., Ohta, K., Shimbo, A., Kawamura, S.-i.: Toward the Fair Anonymous Signatures: Deniable Ring Signatures. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 174–191. Springer, Heidelberg (2006)
Kiayias, J., Tsiounis, Y., Yung, M.: Traceable signatures scheme. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)
Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)
Manulis, M.: Democratic Group Signatures on Example of Joint Ventures. In: ASIACCS 2006 (to appear, 2006), available at: http://eprint.iacr.org/2005/446.pdf
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)
Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg (2003)
Wu, Q., Chen, X., Wang, C., Wang, Y.: Shared-key Signature and Its Application to Anonymous Authentication in Ad Hoc Group. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 330–341. Springer, Heidelberg (2004)
Wong, D.S., Fung, K., Liu, J.K., Wei, V.K.: On the RS-code construction of ring signature schemes and a threshold setting of RST. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 34–46. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wu, Q., Susilo, W., Mu, Y., Zhang, F. (2006). Ad Hoc Group Signatures. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds) Advances in Information and Computer Security. IWSEC 2006. Lecture Notes in Computer Science, vol 4266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908739_9
Download citation
DOI: https://doi.org/10.1007/11908739_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47699-3
Online ISBN: 978-3-540-47700-6
eBook Packages: Computer ScienceComputer Science (R0)