
Aspect-Oriented Workflow Languages:
AO4BPEL and Applications

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

genehmigte

Dissertation

von
Diplom-Informatiker

Anis Charfi
aus Sfax, Tunesien

Referent: Prof. Dr.-Ing. Mira Mezini
Korreferent: Prof. Dr. Gustavo Alonso, ETH Zürich

Tag der Einreichung: 12. Dezember 2006
Tag der mündlichen Prüfung: 07. Februar 2007

Erscheinungsjahr 2007

Darmstadt D17

Erklärung: Hiermit erkläre ich, daß ich die vorliegende Arbeit selbstständig
und unter ausschließlicher Verwendung der angegebenen Quellen und Hilfsmittel
angefertigt habe.

Darmstadt, den 12. Dezember 2006

To my parents,
To my wife,

To my brother and my sister

Acknowledgments

Firstly, I would like to thank sincerely my advisor Prof. Dr. Mira Mezini for
giving me the chance to work in her team, for her support and guidance during
the three years of my PhD work, and for providing valuable feedback on early
drafts of this thesis. I am also grateful to Prof. Dr. Gustavo Alonso for being
the second advisor of this dissertation.

Moreover, I thank the German Science Foundation (DFG) for supporting
this work in the framework of the research school on Electronic Commerce
at Darmstadt University of Technology. I also thank the Tunisian Ministry
of Higher Education for having supported my previous studies in Computer
Science at Munich University of Technology.

In addition, I am indebted to all my colleagues at the Software Technol-
ogy Group and at the Aspect-Oriented Programming Group for the excellent
and productive working environment. I thank Gudrun Jörs for her continuous
support.

I am also grateful to Tom Dinkelaker, Slim Kallel, Vaidas Gasiunas, Sven
Kloppenburg, and Michael Eichberg for proof-reading parts of this thesis and/or
for giving feedback on the dissertation talk. Thanks also to Prof. Dr. Klaus
Ostermann, who allowed me to reuse the Latex template of his dissertation.

My students Andreas Heizenreder, Benjamin Schmeling, and Leo Shang con-
tributed to the work described in this thesis by implementing some parts of the
process container framework and the AO4BPEL engine in the context of their
diploma thesis.

Last but certainly not least, I thank deeply my family for their infinite
support. I am indebted to my dear parents who encouraged me to study abroad
and to pursue my doctoral studies. I owe much of this success to my wife for
her support during the difficult time of writing this thesis. I thank my sister
and my brother for their love.

Abstract

This thesis focuses on the modularity of workflow process specifications. In par-
ticular, it studies the expression support for crosscutting concerns and workflow
changes in current workflow languages and workflow management systems. To
illustrate the issues, two workflow languages are considered: a visual graph-
based language and the Web Service composition language BPEL.

This thesis starts by describing the implementation of several crosscutting
concerns such as data collection for billing, activity execution time measure-
ment, and security in typical processes of a travel agency. When examining the
resulting workflow specifications, the following observations are made.

First, the workflow constructs that implement a crosscutting concern cannot
be encapsulated in a separate module with a well-defined interface. They are
rather scattered across the specifications of several workflow processes. Sec-
ond, the workflow specifications that result after adding the implementation of
a crosscutting concern are tangled. That is, the workflow constructs that im-
plement the business logic are intertwined with the workflow constructs that
implement the other concerns. This leads to monolithic and complex workflow
process specifications that are hard to understand, reuse, maintain, and evolve.

Moreover, this thesis studies the expression of workflow changes such as
adding business logic to a travel process to search for a rental car, or replacing
a partner service. Thereby, the following observations are made.

In static workflow management systems such as BPEL-based ones, the work-
flow constructs that implement a workflow change must be integrated directly
in the specifications of the workflow processes that are affected by that change.
There is no module concept for encapsulating these constructs and express-
ing the workflow change as a separate first-class entity. In adaptive workflow
management systems, the same problems exist because these systems also lack
a module concept for encapsulating workflow changes and expressing them as
separate first-class entities. This makes understanding, tracing, and managing
workflow changes difficult.

The modularity problems mentioned so far are due to the lack of appropri-
ate decomposition mechanisms in current workflow languages. To solve these
problems, a concern-based decomposition of workflow specifications is proposed.
This decomposition technique is incorporated in a new type of workflow lan-

guages that are called aspect-oriented workflow languages. These languages in-
troduce concepts from Aspect-Oriented Software Development such as aspects
and pointcuts to the domains of workflow modeling and workflow specification.

At the workflow modeling level, this thesis extends the graph-based lan-
guage that was mentioned earlier with new constructs that graphically represent
aspect-oriented concepts such as pointcuts, advice, and aspects. The resulting
extension, which is called aspectual workflow graphs, illustrates the concepts of
aspect-oriented workflow languages in a simple way independently of any specific
workflow language.

At the workflow specification level, this thesis presents requirements to
aspect-oriented workflow languages and the core concepts of such languages. In
particular, the join point models, the pointcut languages, the advice languages,
and the composition mechanisms of aspects and processes will be discussed.

Moreover, this thesis introduces a specific aspect-oriented workflow language
for Web Service composition called AO4BPEL. The design and implementation
of AO4BPEL can be considered as a proof-of-concept for aspect-oriented work-
flow languages.

This thesis shows using examples how workflow aspects support a bet-
ter modularization of crosscutting concerns and workflow changes. Moreover,
AO4BPEL aspects increase the flexibility and adaptability of BPEL processes,
as they can be used to modify BPEL processes at runtime.

In addition, this thesis presents two applications of AO4BPEL to show the
value and usefulness of aspect-oriented workflow languages.

In the first application, a process container framework for providing mid-
dleware support to BPEL processes is proposed. In this framework, the non-
functional requirements of the process activities such as security, reliable mes-
saging, and transactions are specified declaratively using a deployment descrip-
tor. These requirements are enforced using a process container that is inspired
by enterprise component models. The process container is implemented as a
light-weight and extensible container using a set of AO4BPEL aspects that are
generated automatically from the deployment descriptor. The container calls
middleware Web Services to enforce non-functional requirements such as secu-
rity, reliable messaging, and transactions. These Web Services are implemented
by extending Open Source implementations of WS-* specifications such as WS-
Security and WS-AtomicTransaction.

In the second application, a hybrid approach to Web Service composition is
introduced. This approach separates the implementation of the business rules
from the BPEL process according to the principles of the Business Rules Ap-
proach. At the implementation level, AO4BPEL aspects are used to implement
all types of business rules in a separate and modular way.

Zusammenfassung

Diese Dissertation beschäftigt sich mit der Verbesserung der Modularizierung
von Workflow-Spezifikationen, im Besonderen mit der Formulierung querschnei-
dender Belange (engl. crosscutting concerns) und Workflow-Änderungen in heuti-
gen Workflow-Sprachen und Workflow-Systemen. Zu diesem Zweck werden zwei
Workflow-Sprachen betrachtet: eine einfache Graph-basierte Sprache und die
BPEL-Sprache für Web Service Komposition.

In einem Szenario, das typische Abläufe bei einem Reiseveranstalter nach-
bildet, wurden mehrere querschneidende Belange mit Hilfe der beiden Beispiel-
sprachen implementiert, wie z. B. Datensammlung für Abrechnung, Messung
der Ausführungszeit der Aktivitäten, und Sicherheit. Bei der Untersuchung der
resultierenden Workflow-Spezifikationen wurden folgende Probleme beobachtet:

Zum einen sind die Workflow-Konstrukte, die einen querschneidenden Be-
lang implementieren, auf die Spezifikationen von mehreren Workflow-Prozessen
verstreut (engl. scattering). Diese Konstrukte können nicht in einem sepa-
raten Modul, das eine eindeutig-definierte Schnittstelle hat, gekapselt werden.
Zum anderen vermischen sich (engl. tangling) die Workflow-Konstrukte, die die
Geschäftslogik ausdrücken, mit den Konstrukten, die den querschneidenden Be-
lang implementieren. Das führt zu komplexen Workflow-Spezifikationen, die
schwer zu verstehen, zu warten und wiederzuverwenden sind.

Darüberhinaus wurde die Formulierung von Workflow-Änderungen in heuti-
gen Workflow-Systemen studiert, wie z. B. das Erweitern eines Urlaubspaket-
prozesses um die Suche nach einem Mietwagen. Dabei wurden folgende Beobach-
tungen gemacht:

In statischen Workflow-Management Systemen, wie beispielsweise heutige
BPEL Workflow-Engines, müssen die Workflow-Konstrukte, die eine Workflow-
Änderung implementieren, direkt in die Spezifikationen der betroffenen Prozesse
eingebettet werden. Es gibt kein Modulkonzept, um diese Konstrukte zu kapseln
und die Änderungen als separate Entitäten erster Klasse auszudrücken. In adap-
tiven Workflow-Management Systemen, die dynamische Änderungen des Work-
flows unterstützten, treten ähnliche Modularitätsprobleme auf; Auch diese Sys-
teme bieten kein Modul, um Workflow-Änderungen als separate Entitäten erster
Klasse auszudrücken. Dies erschwert das Verständnis und die Verwaltung von
Workflow-Änderungen.

Die Modularitätsprobleme, die bisher besprochen wurden, sind auf den Man-
gel an geeigneten Dekompositionsmechanismen in heutigen Workflow-Sprachen
zurückzuführen. Um diese Probleme zu lösen, wird eine Belang-basierte Dekom-
position von den Workflow-Spezifikationen vorgeschlagen. Diese Dekomposition
wird in eine neue Klasse von Workflow-Sprachen eingebaut, die aspektorien-
tierte Workflow-Sprachen genannt werden. Diese Sprachen führen Konzepte
aus der aspektorientierten Softwareentwicklung in den Bereichen der Workflow-
Modellierung und Workflow-Spezifikation ein.

Auf der Workflow-Modellierungsebene wird die bereits erwähnte Graph-
basierte Workflow-Sprache um neue Konstrukte erweitert, die aspektorientierte
Konzepte wie Pointcut und Advice graphisch darstellen. Diese Erweiterung
zeigt die Konzepte aspektorientierter Workflow-Sprachen auf eine einfache und
generische Art und Weise.

Auf der Workflow-Spezifikationsebene wird besonders auf Join Point Mod-
elle, Pointcut-Sprachen, Advice Sprachen, und Kompositionsmechanismen für
aspektorientierte Workflow-Sprachen eingegangen. Zusätzlich wird die aspek-
torientierte Workflow-Sprache AO4BPEL vorgestellt. Diese Sprache und die
zugehörige Workflow-Engine demonstrieren die technische Umsetzbarkeit von
aspektorientierten Workflow-Sprachen.

Es wird durch mehrere Beispiele gezeigt, wie Workflow-Aspekte im Allge-
meinen und AO4BPEL Aspekte speziell eine bessere Modularisierung von quer-
schneidenden Belangen und Workflow-Änderungen ermöglichen. Ausserdem
macht AO4BPEL BPEL Prozesse flexibler, weil AO4BPEL Aspekte Prozesse
zur Laufzeit ändern können. Um die Vorteile und die Nützlichkeit von as-
pektorientierten Workflow-Sprachen zu zeigen, werden zwei Anwendungen von
AO4BPEL vorgestellt.

In der ersten Anwendung wird ein Prozess Container Framework vorgestellt,
das BPEL Prozessen Middlewareunterstützung anbietet. In diesem Frame-
work spezifiziert man die nicht-funktionalen Anforderungen der Aktivitäten
deklarativ, wie z. B. Sicherheit und Transaktionen. Diese Anforderungen wer-
den dann mit Hilfe eines Prozess-Containers durchgesetzt, der ähnlich funk-
tioniert wie Container in Enterprise Komponenten Modellen. Der Prozess-
Container wurde als ein leichtgewichtiger und erweiterbarer Container imple-
mentiert, unter Zuhilfenahme von AO4BPEL Aspekten, die automatisch aus
dem Deployment-Deskriptor generiert werden. Der Container ruft dann Mid-
dleware Web Services auf, um nicht-funktionale Anforderungen umzusetzen.
Für die Implementierung dieser Web Services wurden Open-Source Implemen-
tierungen von Web Service Spezifikationen erweitert.

In der zweiten Anwendung wird eine hybride Vorgehensweise zur Kompo-
sition von Web Services vorgeschlagen. Diese Vorgehensweise trennt die Im-
plementierung der Geschäftsregeln von dem BPEL-Prozess, den Prinzipien des
Business Rules Approaches entsprechend. Auf der Implementierungsebene, wer-
den AO4BPEL-Aspekte benutzt, um die verschiedenen Typen von Geschäfts-
regeln modular zu implementieren.

Contents

1 Introduction 1
1.1 The Thesis in a Nutshell . 1
1.2 Contributions . 3
1.3 Structure of the Thesis . 5

I Background and Problem Statement 7

2 Background 8
2.1 Introduction . 8
2.2 Workflow Management . 8

2.2.1 Workflow management systems 9
2.2.2 Workflow languages . 10

2.3 Web Services . 13
2.3.1 Basic Web Service specifications 14
2.3.2 Advanced Web Service specifications 15
2.3.3 Web Service composition 18

2.4 The Business Process Execution Language (BPEL) 19
2.4.1 Basic concepts . 19
2.4.2 Advanced concepts . 20
2.4.3 BPEL implementations 22

2.5 Aspect-Oriented Programming 22
2.6 Conclusion . 24

3 Problem Statement 25
3.1 Introduction . 25
3.2 A Travel Agency Scenario . 26

3.2.1 Workflow graphs for the travel agency scenario 26
3.2.2 The travel agency scenario in BPEL 27

3.3 Crosscutting Concern Modularity 30
3.3.1 Case studies . 30
3.3.2 The need for crosscutting mechanisms 38

3.4 Change Modularity . 39
3.4.1 Change scenarios . 41
3.4.2 Expressing changes in static workflow management 43
3.4.3 Expressing changes in adaptive workflow management . . 46
3.4.4 The need for change modules 47

3.5 Conclusion . 48

II Solution: Aspect-Oriented Workflow Languages and
AO4BPEL 49

4 Aspect-Oriented Workflow Languages 50
4.1 Introduction . 50
4.2 Concern-based Decomposition 51
4.3 Aspectual Workflow Graphs . 53

4.3.1 Join points, pointcuts, advice 53
4.3.2 Composition . 54
4.3.3 Examples . 54
4.3.4 Discussion . 57

4.4 Aspect-Oriented Workflow Languages 57
4.4.1 Join point model . 58
4.4.2 Pointcuts . 58
4.4.3 Advice . 59
4.4.4 Aspects . 61
4.4.5 Aspect/Process composition 62

4.5 Related Work . 64
4.6 Conclusion . 65

5 AO4BPEL: an Aspect-Oriented Workflow Language for Web
Service Composition 66
5.1 Introduction . 66
5.2 Overview of AO4BPEL . 67

5.2.1 Join point model and pointcut language 67
5.2.2 Advice . 70
5.2.3 Aspect/Process composition 75

5.3 Examples . 76
5.3.1 Crosscutting concern modularization 76
5.3.2 Workflow change modularization 78
5.3.3 Discussion . 81

5.4 Implementation . 82
5.4.1 Architecture of the AO4BPEL engine 82
5.4.2 Composition mechanism 83
5.4.3 Performance . 86

5.5 Related Work . 88
5.5.1 AO4BPEL and AspectJ 88
5.5.2 Other aspect-oriented extensions to BPEL 88
5.5.3 Work on AOP and Web Services 90
5.5.4 Work on flexibility in BPEL 90

5.6 Conclusion . 91

III Applications of AO4BPEL 92

6 A Process Container Framework for Middleware Support in
BPEL Processes 93
6.1 Introduction . 93
6.2 Non-functional requirements in BPEL processes 94

6.2.1 Classification . 95
6.2.2 Security requirements . 95
6.2.3 Reliable messaging requirements 98
6.2.4 Transaction requirements 100

6.3 Support for Non-functional Requirements in Current Engines . . 101
6.3.1 Survey . 102
6.3.2 Classification . 104
6.3.3 Discussion . 107

6.4 Overview of the Framework . 108
6.4.1 Requirement specification 110
6.4.2 Requirement enforcement 112

6.5 Conclusion . 113

7 Implementing the Process Container Framework 115
7.1 Introduction . 115
7.2 An AO4BPEL-based Container 116

7.2.1 Container aspects . 116
7.2.2 Generation of container aspects 121
7.2.3 Advantages of the aspect-based container 127

7.3 The Security Web Service . 128
7.3.1 The interface . 128
7.3.2 Usage by the process container 130
7.3.3 The implementation . 131

7.4 The Reliable Messaging Web Service 133
7.4.1 The interface . 133
7.4.2 Usage by the process container 133
7.4.3 The implementation . 134

7.5 The Transaction Web Service . 142
7.5.1 The interface . 142
7.5.2 Usage by the process container 142
7.5.3 The implementation . 143

7.6 Limitations of the Current Implementation 144
7.7 Related Work . 145

7.7.1 Works on light-weight containers 145
7.7.2 Works on non-functional concerns in BPEL 145

7.8 Conclusion . 147

8 Implementing Business Rules with AO4BPEL 148
8.1 Introduction . 148
8.2 Business Rules . 149

8.2.1 Definition . 149
8.2.2 Classification . 150
8.2.3 The Business Rules Approach 150

8.3 Integrating Business Rules in BPEL 151

8.3.1 Examples . 151
8.3.2 Problems . 153
8.3.3 Discussion . 154

8.4 Hybrid Web Service Composition 155
8.4.1 Implementing business rules with AO4BPEL 157
8.4.2 Issues in using a rule engine 163

8.5 Related Work . 164
8.6 Conclusion . 165

9 Conclusions 166
9.1 Summary . 166
9.2 Future work . 168

Bibliography 171

Curriculum Vitae 201

List of Figures

2.1 The process definition meta-model 10
2.2 A basic graph-based workflow language 13
2.3 The Web Service protocol stack 14

3.1 Two workflow processes in the travel agency scenario 27
3.2 The travel agency processes in BPEL 28
3.3 Data collection for billing . 31
3.4 Activity execution time measurement 34
3.5 Workflow-level security . 37
3.6 Adding car rental logic to the travel package process 42

4.1 Concern-based decomposition of workflow specifications 53
4.2 Data collection for billing as an aspect 55
4.3 Activity execution time measurement as an aspect 55
4.4 A change aspect for adding car rental logic 56

5.1 Architecture of the AO4BPEL engine 82
5.2 Advice weaving and the activity lifecycle 84

6.1 The process container framework 109
6.2 The selector view of the GUI tool 112
6.3 The requirement view of the GUI tool 112

7.1 Aspect generation . 123
7.2 Deploying the transfer process . 126
7.3 The process view of the AO4BPEL engine 127
7.4 Interaction of the container and the security service 131
7.5 Interaction of the container and the reliable messaging service . . 134
7.6 The extended reliable messaging protocol 137
7.7 Extending the sender . 138
7.8 The entirely new reliable messaging protocol (non-blocking) . . . 140
7.9 The entirely new reliable messaging protocol (blocking) 141
7.10 Interaction of the container and the transaction service 143

8.1 A hybrid approach to Web Service composition 156

List of Tables

5.1 Performance measurements for the AO4BPEL engine 86

6.1 Security support in current BPEL engines 102
6.2 Reliable messaging support in current BPEL engines 103
6.3 Transaction support in current BPEL engines 103

7.1 Aspect types for security . 122
7.2 Aspect types for reliable messaging 122
7.3 Aspect types for transactions . 122

List of Listings

2.1 A logging aspect in AspectJ . 23
3.1 The travel package process in BPEL 29
3.2 Collecting billing data in the travel package process 31
3.3 Collecting billing data in the flight process 32
3.4 Execution time measurement in the travel package process 35
3.5 Execution time measurement in the flight process 36
3.6 Adding car rental logic to the travel package process 43
3.7 Replacing a bad performing partner Web Service 45
5.1 The data collection for billing aspect 76
5.2 The execution time measurement aspect 77
5.3 The car rental aspect . 79
5.4 The partner replacement aspect 80
6.1 A bank transfer process in BPEL 96
6.2 Configuring a partner link in Virtuoso 105
6.3 A BPEL process with transactional extensions 107
6.4 A deployment descriptor for the transfer process 111
7.1 A container aspect for encryption 117
7.2 A container aspect for reliable messaging 119
7.3 A container aspect for transaction rollback 120
7.4 Aspect template for message encryption 124
7.5 Aspect frame for security aspects 125
7.6 The secure messaging port type 128
7.7 The secure conversation port type 130
7.8 The interface of the reliable messaging Web Service 133
7.9 The atomic transaction port type 142
8.1 The extended travel package process 152
8.2 The constraint rule R0 as an aspect 158
8.3 The action enabler rule R1 as an aspect 158
8.4 The computation rule R2 as an aspect 159
8.5 The inference rule R3 as an aspect 161

CHAPTER 1

Introduction

1.1 The Thesis in a Nutshell

The Workflow Management technology [85, 170] has its origins in office automa-
tion systems, which emerged in the seventies with the promise to automate office
work and eliminate paper.

The main focus of Workflow Management is process automation. This tech-
nology has been used in the traditional business domain [124, 85] and more
recently in science and engineering [131, 195]. Moreover, advances such as the
Internet and the Web have sustained the interest of academia and industry in the
workflow technology, which is a suitable vehicle to automate complex processes
even in distributed, cross-organizational, and heterogeneous environments.

Workflow Management systems provide software support for modeling and
coordinating the flow of work and information between several participants [178].
Two main concerns are addressed by these systems: the workflow specification
using workflow languages and the workflow execution using workflow engines.

A workflow process specification is a description of the workflow process
in a form that supports its automated execution by the workflow engine. It
consists of units of work called activities, transition information that defines the
control flow between them, data declarations for the workflow process and its
activities as well as data flow information, declarations of the participants that
can perform the activities, and declarations of the IT applications that support
them.

Workflow process specifications are complex by nature. They are even more
complex than procedural and object-oriented programs because they address
not only control flow and data flow aspects but also organizational and technical
aspects. In addition to the inherent complexity of workflow specifications, to-
day’s organizations are characterized by a large number of workflow processes,
which often need to be adapted or customized. As a result, having modular
workflow specifications becomes necessary to master the complexity and the
frequent change requirements of workflow processes.

1

However, the modularity support provided by current workflow languages is
limited. When expressing crosscutting concerns (i.e., concerns that cut across
the modular structure of workflow processes) and workflow changes (i.e., modi-
fications of the workflow processes) in current workflow languages and workflow
management systems the following problems are observed:

First, the workflow constructs, which implement crosscutting concerns such
as data collection for billing and measurement of activity execution time are
scattered across the workflow specifications of several processes. In addition, the
workflow specifications are tangled as the workflow constructs that implement
the process business logic are intertwined with the workflow constructs that
implement other crosscutting concerns. Thereby, scattering and tangling span
not only the activities, but also the data variables, the participant declarations,
and the application declarations. This leads to complex workflow specifications
that are hard to understand, to maintain, and to reuse.

Second, state of the art workflow languages and workflow management sys-
tems lack a construct for expressing workflow changes modularly. The modular
expression of changes is needed especially when the workflow changes define
variations that should be switched on and off flexibly and when the changes
should be applied to running workflow process instances.

In fact, when expressing a workflow change in static workflow management
systems such as current implementations of the Business Process Execution
Language (BPEL) [59], the change has to be integrated directly in the workflow
process specification. In such an approach, the change is not expressed in a sep-
arate module. Moreover, the change is not treated as a first-class entity because
it looses its identity when it is integrated in the workflow process specification.

Like static workflow management systems, adaptive workflow management
systems such as ADEPT [157] and WASA [193] also lack a module concept
for encapsulating the activities, the variables, the participants, and the appli-
cations that are necessary for a dynamic change. ADEPT and WASA merely
provide low-level change operations for adding/deleting activities and/or tran-
sitions to/from the workflow graph at runtime. That is, these systems do not
support a declarative high-level expression of workflow changes as first-class en-
tities. Consequently, understanding, tracing, and managing workflow changes
becomes a difficult task.

The goal of this PhD work is to design workflow languages that support the
modularization of crosscutting concerns and workflow changes. To show the
feasibility of these languages, they will be demonstrated by a prototype imple-
mentation. The central thesis of this work is that Aspect-Oriented Software
Development can be applied in the context of workflow management to solve
the problems that were mentioned above.

In the context of programming languages, crosscutting modularity problems
were solved by Aspect-Oriented Programming (AOP) [119]. AOP supports a
multi-dimensional decomposition of software applications [175] and separates
crosscutting concerns from the business logic by providing new language con-
structs such as aspects and pointcuts. So far, Aspect-Oriented Software Devel-
opment [54] has been used mostly in the context of programming languages.

This thesis introduces aspect-oriented workflow languages, which incorporate
the application of the aspect-orientation paradigm to workflow modeling and
workflow specification. These languages support a concern-based decomposition
of workflow process specifications. Moreover, they provide language constructs

2

that allow the modularization of crosscutting concerns and workflow changes.
To illustrate the concepts of aspect-oriented workflow languages, this thesis
presents two aspect-oriented workflow languages.

First, a visual graph-based language that is called aspectual workflow graphs
will be presented. This language shows the concepts of aspect-oriented workflow
languages graphically and independently of any specific workflow language. This
language supports aspect-oriented workflow modeling.

Second, the AO4BPEL language for Web Service composition will be intro-
duced. This language, which is an extension to BPEL, supports aspect-oriented
workflow specification. The design and implementation of this language can be
considered as a proof-of-concept for aspect-oriented workflow languages.

This thesis shows how AO4BPEL aspects allow the modularization of sev-
eral crosscutting concerns and workflow changes. In addition, it presents two
important applications of AO4BPEL to emphasize the value and usefulness of
workflow aspects.

In the first application, aspects are used to implement a light-weight process
container that provides support for security, reliable messaging, and transactions
to BPEL processes. In the second application, aspects are used to implement
business rules in BPEL processes in a modular way according to the principles
of the Business Rules Approach.

1.2 Contributions

The contributions of this thesis can be summarized as follows:

• Identification of the limitations of current workflow languages w.r.t. cross-
cutting concern modularity and workflow change modularity

This thesis is the first work that identifies the lack of means in current
workflow languages for modularizing crosscutting concerns and for ex-
pressing workflow changes as separate first-class entities.

• Introducing aspect-oriented workflow languages

This work is the first to introduce aspects to workflow languages. It
does not simply transfer constructs from Aspect-Oriented Programming to
workflow languages. It rather considers the particular needs and properties
of workflow languages and workflow management systems when defining
join point models, pointcut languages, advice languages, and composition
mechanisms of aspects and processes. Aspect-oriented workflow languages
show that Aspect-Oriented Software Development is applicable in other
contexts beyond programming languages.

• Introducing aspect-oriented workflow modeling

This thesis introduces aspectual workflow graphs, which are represented
by a visual graph-based workflow language that illustrates the concepts
of aspect-oriented workflow languages graphically and independently of
any specific language. This language supports aspect-oriented workflow
modeling.

3

• Design and implementation of the AO4BPEL language

The AO4BPEL language and its implementation can be considered as a
proof-of-concept for aspect-oriented workflow languages.

This thesis shows how AO4BPEL aspects allow to modularize several
crosscutting concerns such as data collection for billing, security, and
transactions. Moreover, it shows how aspects modularize workflow changes
such as replacing a partner Web Service and how appropriate composition
techniques support treating workflow changes as first-class entities.

• Supporting dynamic changes in BPEL processes

A major limitation in BPEL is the lack of support for dynamic changes. As
the AO4BPEL engine supports the dynamic composition of aspects and
processes, AO4BPEL aspects enable dynamic changes. Thus, AO4BPEL
improves the flexibility and adaptability of BPEL processes in a significant
way.

• Survey of support for non-functional requirements in current engines

This thesis studies the non-functional requirements of BPEL processes
w.r.t. security, reliable messaging, and transactions. Moreover, it proposes
a classification of non-functional requirements and it presents a survey of
the support for these requirements in many BPEL engines.

• Design and aspect-based implementation of a process container for provid-
ing middleware support to BPEL processes

To support the non-functional requirements of BPEL processes, this thesis
presents a generic, modular, and extensible process container framework,
which consists of three main components:

– An XML-based deployment descriptor to specify the non-functional
requirements of the process activities declaratively.

– A process container to intercept the execution of activities at well-
defined points and plug in calls to middleware services.

– BPEL middleware services to provide the necessary middleware func-
tionality for enforcing the non-functional requirements.

The process container is implemented as a light-weight container using
a set of AO4BPEL aspects that are generated automatically from the
deployment descriptor using XSLT. This thesis shows that container ar-
chitectures are also feasible in the context of workflow processes and that
an aspect-based implementation of the container brings several benefits.

• Implementation of three middleware Web Services for BPEL

As part of the implementation of the process container framework, three
middleware Web Services were developed respectively for security, reliable
messaging, and transactions. These Web Services extend Open Source
implementations of WS-* specifications from Apache to support advanced
non-functional requirements such as secure conversations and multi-party
ordered message delivery. These Web Services can also be used indepen-
dently of the process container framework.

4

• Design and aspect-based implementation of a hybrid approach to business
rules in BPEL

This thesis proposes a hybrid approach to Web Service composition, which
lies between workflow-based approaches and rule-based approaches. This
approach separates the business rules that are implemented with AO4BPEL
aspects from the BPEL implementation of workflow processes. This thesis
shows that AO4BPEL aspects can implement all types of business rules
modularly according to the principles of the Business Rules Approach.

1.3 Structure of the Thesis

This thesis consists of an introduction in Chapter 1, three main parts, and a
conclusion.

I. The first part provides some background knowledge and presents the prob-
lem statement of this thesis.

Chapter 2 provides a brief introduction to three technologies that are rele-
vant to this work: workflow management and workflow languages, the Web
Service protocol stack including the BPEL language, and Aspect-Oriented
Programming.

Chapter 3 presents the problem statement of this thesis. It shows the
lack of crosscutting concern modularity and change modularity in current
workflow languages by means of a travel agency scenario and two workflow
languages: a visual graph-based language and the workflow-based Web
Service composition language BPEL.

II. The second part proposes a solution to the modularity problems outlined
in the first part.

Chapter 4 introduces aspect-oriented workflow languages and presents
their core concepts. This chapter illustrates how aspect-oriented workflow
languages solve the modularity problems that are mentioned in Chapter 3
by using aspectual workflow graphs .

Chapter 5 presents the AO4BPEL language and its implementation. More-
over, it shows through examples how AO4BPEL solves the modularity
problems related to crosscutting concerns and workflow changes that were
presented in Chapter 3.

III. The third part presents two applications of AO4BPEL.

Chapter 6 presents a process container framework for supporting the non-
functional requirements of BPEL processes such as security, reliable mes-
saging, and transactions.

Chapter 7 describes an aspect-based implementation of the process con-
tainer framework that is proposed in Chapter 6. Moreover, it presents
BPEL middleware Web Services for reliable messaging, security, and trans-
actions.

Chapter 8 presents a hybrid approach to Web Service composition and
shows how AO4BPEL aspects implement the different types of business
rules in a modular way.

5

Chapter 9 summarizes the results and contributions of this PhD work. More-
over, it outlines several directions for future work.

In the framework of the research done in this PhD work, the following papers
were published.

1. Anis Charfi and Mira Mezini, Aspect-Oriented Web Service Composition
with AO4BPEL. In Proceedings of the 2nd European Conference on Web
Services (ECOWS), Volume 3250 of LNCS, pp. 168–182. Springer, 2004.

2. Anis Charfi and Mira Mezini, Hybrid Web Service Composition: Business
Processes Meet Business Rules. In Proceedings of the 2nd International
Conference on Service Oriented Computing (ICSOC), pp. 30–38. ACM
Press, 2004.

3. Anis Charfi and Mira Mezini, Using Aspects for Security Engineering of
Web Service Compositions. In Proceedings of the 3rd IEEE International
Conference on Web Services (ICWS), pp. 59–66. IEEE Computer Society,
2005.

4. Anis Charfi and Mira Mezini, Application of Aspect-Oriented Program-
ming to Workflows. In Proceedings of the 5 èmes Journées Scientifiques
des Jeunes Chercheurs en Génie Electrique et Informatique (GEI), pp.
117-122, 2005.

5. Anis Charfi and Mira Mezini, An Aspect-based Process Container for
BPEL. In Proceedings of the 1st Workshop on Aspect-Oriented Middle-
ware Development (AOMD), pp. 1-6. ACM Press, 2005.

6. Anis Charfi, Benjamin Schmeling, Mira Mezini, Reliable Messaging for
BPEL Processes. In Proceedings of the 4th IEEE International Conference
on Web Services (ICWS), pp. 293–302. IEEE Computer Society, 2006.

7. Anis Charfi and Mira Mezini, Middlware Support for BPEL Workflows in
the AO4BPEL Engine. Demo paper at the 4th International Conference
on Business Process Management (BPM), 2006.

8. Anis Charfi and Mira Mezini, Aspect-Oriented Workflow Languages. In
Proceedings of the 14th International Conference on Cooperative Infor-
mation Systems (CoopIS), Volume 4275 of LNCS, pp. 193–200. Springer,
2006.

9. Anis Charfi, Benjamin Schmeling, Andreas Heizenreder, Mira Mezini, Re-
liable, Secure and Transacted Web Service Composition with AO4BPEL.
In Proceedings of the 4th European Conference on Web Services (ECOWS),
pp. 23–34. IEEE Computer Society, 2006.

10. Anis Charfi and Mira Mezini, AO4BPEL: An Aspect-Oriented Extension
to BPEL. World Wide Web Journal: Recent Advances in Web Services
(special issue). Springer, 2007.

6

Part I

Background and Problem Statement

7

CHAPTER 2

Background

2.1 Introduction

This chapter provides the reader with background knowledge about the relevant
technologies to this PhD work. In particular, a short overview of Workflow
Management, Web Services, and Aspect-Oriented Programming will be given.

The remainder of this chapter is structured as follows. In Section 2.2, an
introduction to workflow management and workflow languages is provided. In
Section 2.3, the Web Service protocol stack is presented. In Section 2.4, the
Web Service composition language BPEL is introduced. In Section 2.5, Aspect-
Oriented Programming is presented. Section 2.6 concludes this chapter.

2.2 Workflow Management

The Workflow Management Coalition (WFMC) [178] is the main organization
in the area of workflow standardization. In the following, the core concepts in
Workflow Management are introduced using the definitions of the WFMC [196].

A business process is “a set of activities that collectively achieve a business
objective”. A workflow is “the automation of a business process, in whole
or part, during which documents, information or tasks are passed from one
participant to another for action, according to a set of procedural rules ”[196].
Each execution of a workflow process is called a workflow instance.

A workflow schema is “the specification of the workflow process in a form
that supports automated manipulation, such as modeling or enactment by a
workflow management system”. The workflow schema consists of a set of activ-
ities and their relationships, criteria to indicate the start and termination of the
process, and information about the individual activities, such as participants,
data, and the associated IT applications. The term workflow schema and the
term workflow process specification are used as synonyms in this thesis.

8

In [130], the following three types of workflows are distinguished:

• Administrative workflows are repetitive and structured processes, whose
execution can be effectively automated, e.g., bureaucratic processes such
as travel expense processing or car registration. They are generally not
mission-critical and are characterized by simple information processing
that involves few information systems [85, 171].

• Production workflows are repetitive and structured processes like admin-
istrative workflows. However, they involve several heterogeneous infor-
mation systems and pose high requirements w.r.t. throughput, transac-
tion, reliability, and security. Production workflows implement critical
processes and are characterized by a high number of workflow instances
[85, 171].

• Ad hoc workflows are unstructured and non-routine processes, where the
workflow is not fully predefined, e.g., sales proposal processes, design pro-
cesses, etc. Ad hoc workflows require human interaction not only for
performing the activities but also for coordinating them [85, 171].

For this thesis, only administrative and production workflows are relevant.

2.2.1 Workflow management systems

A workflow management system is “a system that defines, creates, and manages
the execution of workflows through the use of software. This software is running
on one or more workflow engines, which are able to interpret the workflow
schema, interact with workflow participants and where required invoke IT tools
and applications” [196].

Workflow management systems consist of two main components: a build
time component and a run time component. The build time component is used
to model, define, and analyze workflow processes. The run time component is
concerned with coordinating the various activities, supporting their execution
in a given organizational and technical environment by interacting with human
users and software tools, and managing the workflow instances.

Workflow management systems enable a new kind of application develop-
ment paradigm, in which a workflow-based application [125] consists of a work-
flow process and a collection of software tools that support the execution of the
process activities.

This two-level programming paradigm [125] separates the activity specifica-
tion level from the activity implementation level: workflow processes are spec-
ified in the upper level (programming in the large) and functional algorithms
and activity implementations are specified in the lower level (programming in
the small).

The separation of these two levels brings several benefits. It makes the
process flow explicit instead of being buried in the code of several applications.
Thus, workflow-based applications become more flexible because changes to the
workflow process have no impact on the activity implementations. Moreover,
this two-level programming paradigm increases the reusability of the workflow
process and the activity implementations.

9

2.2.2 Workflow languages

Unlike programming languages, which describe computations, workflow lan-
guages describe processes. In [129], workflow languages are classified based on
the underlying methodologies into the following classes:

• Graph-based languages: They are the most traditional and intuitive way
for specifying workflows. They use directed graphs, whereby nodes repre-
sent activities and edges represent the flow of control and/or data between
them.

• Petri-net based languages: Petri-nets [151] were originally developed to
describe and analyze concurrent systems. In several works [92, 180, 181]
enhanced Petri-net models were used to specify workflows.

• State and activity charts: State charts are an extension of finite state
machines [95]. In this model, a transition moves the workflow from one
state to another. State charts are complemented by activity charts to
describe the events that trigger state transitions. State charts and activity
charts were used to specify workflows in several works [99, 167, 198].

• Workflow programming languages: They are used either to directly specify
workflow schemes or to provide an internal representation of a workflow
process. MOBILE [111] is a such a workflow language.

The WFMC process definition meta-model

The WFMC defined a meta-model for process definition as shown in Figure
2.1. This meta-model provides a common method to access and describe work-
flow process specifications in a vendor-independent way. Thus, it gives a good
overview of the constructs that are typically found in workflow languages.

is implemented

may reference

as
include
may

consists of

may refer to

may use

may use

* including
 loop control

(Sub) Process
Definition

to

frommay invoke
is performed by

may use

Workflow
Relevant Data

Resource Repository
or

Organizational Model

Workflow
Participant
Declaration

Workflow
Application
Declaration

Transition
Information

*

System &
Environmental

Data Loop

Workflow
Process Activity

Atomic Activity

Workflow Process Definition

Figure 2.1: The process definition meta-model

10

The different entities of this meta-model are:

• Workflow Process Activity: Each activity comprises a logical, self-contained
unit of work that will be processed using a combination of a resource (par-
ticipant assignment) and a software application (application assignment).
An activity may also specify the usage of some workflow relevant data.

• Transition Information: Activities are connected to one another via tran-
sitions. Each transition has a source and a target activity in addition to
an optional transition condition. If an activity has more than one incom-
ing transition a join is used to specify the semantics of those transitions.
A split is used to specify the semantics when an activity has multiple
outgoing transitions.

• Workflow Relevant Data: The workflow relevant type declarations specify
the user-defined data types. The workflow relevant data specifies the
workflow variables, which can be either used for decision data (e.g., to
evaluate conditions), for the input and output data of the activities, or for
system data.

• Workflow Participant Declaration: The participant declarations describe
the resources that perform the different activities. The participant as-
signment attribute associates an activity with the resources that perform
it.

• Workflow Application Declaration: This includes the tools that will be
invoked by the workflow engine to execute the activities. The applica-
tion assignment attribute associates an activity with the applications that
execute it.

Workflow perspectives

The entities of the WFMC process definition meta-model correspond to different
dimensions in workflow specification that are known in the literature as workflow
perspectives. According to [62, 170], there are five workflow perspectives:

• The functional perspective specifies which activities have to be executed
within the workflow process. This perspective also covers the functional
decomposition of workflows into activities (what does the workflow do).

• The behavioral perspective focuses on the ordering, the control flow depen-
dencies, and the pre- and post-conditions of the process activities (when
and under which conditions are the activities executed).

• The informational perspective specifies the workflow data, the input and
output data of the workflow process and its different activities, and the
data flow between those activities (which data will be used by which ac-
tivities).

• The organizational perspective describes the organizational environment,
in which the workflow process is executed. In addition, it specifies the
assignment of activities to participants within the organization (who will
perform the activity).

11

• The operational perspective covers technical issues such as the external
software tools that implement some activity and how they are invoked
(which application will be used).

Workflow patterns

To compare the expressiveness of workflow languages, a set of twenty workflow
control patterns has been identified in [183]. These patterns address the behav-
ioral workflow perspective. They are classified into basic patterns and advanced
patterns [183].

The basic workflow control patterns are supported by most workflow lan-
guages. In the following, these patterns are presented shortly:

• sequence refers to a set of activities in the workflow process that are exe-
cuted in sequential order.

• parallel split refers to a point in the workflow process where a single thread
of control splits into multiple threads of control, which can be executed in
parallel.

• synchronization refers to a point in the workflow process where multiple
parallel activities converge into one single thread of control, thus synchro-
nizing multiple threads.

• exclusive choice chooses one execution path from several alternatives based
on some decision.

• simple merge refers to two or more alternative branches that come together
without synchronization.

A simple graph-based workflow language

In the following, a simple graph-based workflow language is introduced. This
language, which was presented in [161], will be used in the next chapter to
illustrate the problems of crosscutting concern modularity and change modular-
ity. This language provides two kinds of process modeling objects: nodes and
transitions.

A node can be either an activity node that represents a workflow activity, or
a choice/merge node. Activity nodes are represented graphically by a rectangle
and choice/merge nodes are represented by a circle.

A transition links two nodes and it is represented graphically by a directed
edge. A transition defines the execution order of its source and destination
nodes. A workflow process can be modeled by connecting nodes with transitions
into a directed acyclic graph.

This language provides other workflow modeling constructs as shown in Fig-
ure 2.2. For instance, iteration allows for the repetition of a group of activities.
Nesting means that an activity can be composite (i.e., it contains nested activi-
ties). A composite activity is graphically represented through a shaded rectangle
under the task rectangle.

As a workflow process is represented by a directed acyclic graph, it has at
least one node that has no incoming transitions and at least one node that has
no outgoing transitions. These are respectively the begin and the end node.

12

Sequence Iterative

EndMergeBegin Choice

Split Synchronizer

Nested

Figure 2.2: A basic graph-based workflow language

This language supports the basic workflow control patterns. The sequence
pattern is modeled by connecting at most one incoming and one outgoing tran-
sition to an activity. The parallel split is modeled by connecting two or more
outgoing transitions with an activity. The synchronization pattern is repre-
sented by attaching more than one incoming transitions to an activity. The
exclusive choice pattern is modelled by attaching two or more transitions to
a choice node. At runtime, the workflow selects one of the alternative execu-
tion paths for a given instance of the workflow process by activating one of the
transitions that originate from the choice/coordinator object. The simple merge
pattern is represented by attaching two or more incoming transitions to a merge
node.

2.3 Web Services

Service-Oriented Computing (SOC) [100, 148] is a paradigm for distributed com-
puting, which uses services as basic elements in developing software applications.
The aim of SOC is to enable a rapid and low-cost composition of services into
distributed applications even in open and heterogeneous environments.

Services are self-contained, self-describing, and platform-independent com-
putational entities that can be described, published, discovered, invoked, and
composed using standard protocols. A service performs some function that
could range from a simple request to a complex business process.

The advent of Service-Oriented Computing has introduced another usage
of the Web, which was originally conceived as an environment for publishing
documents and information, as an environment for delivering and consuming
software services. Web Services [2] manifest the application of the Service-
Oriented Computing paradigm to the Web.

The W3C defines a Web Service as a “software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other systems
interact with the Web Service in a manner prescribed by its description (using
SOAP messages), typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards” [91].

13

The Web Service protocol stack is a set of specifications and standards that
cover several aspects in Web Services. This stack, which is shown partly in
Figure 2.3, can be divided into basic specifications that address the core issues of
description, discovery, and interaction and advanced specifications that address
quality of service and composition issues.

Composition

Quality of
Service

Discovery

 BPEL WS-CDL

WS-R,WS-RM WS-Security
WS-Coordination

WS-AT, WS-BA

DescriptionMessaging

SOAP

 BPEL

WSDL,WS-Policy UDDI

Basic Web Service Specifications

Advanced Web Service Specifications

Figure 2.3: The Web Service protocol stack

2.3.1 Basic Web Service specifications

SOAP, WSDL, and UDDI are the basic three Web Service specifications. In the
following, each of these specifications is presented shortly.

SOAP: The Web Service Messaging Protocol

SOAP [188] is an XML-based protocol for exchanging structured information in
distributed environments. SOAP is the communication protocol for interacting
with a Web Service. It works on top of existing transport protocols such as
HTTP and SMTP.

A SOAP message has a simple structure consisting of message headers (in-
tended for information that is not application-dependent such as quality of ser-
vice information) and a message body (intended for application data). SOAP is
generic and extensible as other Web Service specifications were built on top of
it by defining new headers, e.g., for security, reliable messaging, etc.

WSDL: The Web Service Description Language

The Web Service Description Language [189] is an XML-based language for
describing the functional interface of a Web Service. A WSDL document consists
of two parts: an abstract description (what the Web Service does) and a concrete
description (where it is located and how it can be invoked).

14

The abstract description defines the functional interface of the Web Service
in terms of the messages that it sends or receives. The abstract description
consists of one or more port types, which specify the operations of the Web
Service and the structure of their input and output messages.

The concrete description consists of details on protocol and data marshaling
rules for interacting with the Web Service and the physical address where it
can be accessed. A binding is a mapping of a port type to a transport protocol
together with a format for data encoding. A port defines the physical address
for a binding and a service is a collection of related ports.

UDDI: The Web Service Directory

The Universal Description, Discovery and Integration [90] specifications provide
a means for publishing and discovering Web Services. UDDI can be considered
as the naming and directory service for Web Services.

A UDDI registry is an XML-based registry, which contains information about
organizations (business entities) that provide Web Services (business services)
and meta-data about those Web Services, such as technical and legal details
(binding templates, technical models).

The UDDI specification defines several APIs for interacting with a UDDI
registry, e.g, the inquiry API and the publishing API. A UDDI registry can also
be accessed as a Web Service.

2.3.2 Advanced Web Service specifications

Several important issues are not addressed by the basic protocol stack, such as
service composition, security, reliable messaging, transactions, etc. To fill this
gap, many so-called WS-* specifications have been proposed on top of the basic
Web Service specifications. The WS-* specifications provide mechanisms for
quality of service (e.g., WS-Security [136] and WS-ReliableMessaging [43]) and
for service composition (e.g., BPEL [59]).

WS-* specifications are composable: whilst each of them addresses a specific
concern and has a value on its own, it can work seamlessly in conjunction
with other WS-* specifications. For example, a SOAP message that is secured
according to WS-Security can also carry reliable messaging headers as defined
by WS-ReliableMessaging. In the following, the WS-* specifications that are
relevant to this thesis will be presented shortly.

Web Service Security

SOAP messages are exposed to several security threats when exchanged between
clients and Web Services. The receiver needs to be sure that the message was
really sent by the claimed sender, that is was not read or tampered with during
transmission, etc.

WS-Security [136] is an OASIS standard, which defines SOAP extensions
to implement message integrity, message confidentiality, and single message au-
thentication. WS-Security defines a security header to convey security-related
data such as signatures, keys, time stamps, etc. WS-Security supports two kinds
of authentication tokens: a UsernameToken can be used to carry a username

15

and password pair and a BinaryToken can be used to carry other tokens such
as X.509 certificates and Kerberos tickets.

There are other security specifications that build on top of WS-Security and
address advanced security issues such as trust [4], secure conversations [88],
federation [3], etc.

WS-Trust [4] provide methods for issuing and exchanging security tokens,
and for managing and establishing trust relationships. In the trust model of
WS-Trust, a client that wants to interact with a given Web Service has to
interact with the Security Token Service (STS) of that Web Service. The STS
may require its own set of claims in order to subsequently issue a token that the
client uses to interact with the Web Service.

WS-SecureConversation [88] builds upon WS-Security and WS-Trust to sup-
port the establishment of mutually authenticated security contexts, which can
be used to exchange several messages. In WS-Security, each individual message
should contain information about the artifacts that were used to secure it. WS-
SecureConversation eliminates the overhead of carrying and validating all these
security artifacts in each SOAP message.

Web Service Reliable Messaging

Several delivery errors could occur when unreliable communication channels are
used, such as message loss, message duplication, and message reordering (i.e.,
messages that are sent in a certain order are received in a different order).

There are two competing specifications that address reliable messaging in
Web Services: WS-ReliableMessaging [43] is a specification by IBM, BEA, Mi-
crosoft, and Tibco and WS-Reliability [135] is an OASIS standard.

Both specifications provide similar delivery assurances (exactly-once, at-
least-once, at-most-once, and ordered delivery). To enforce these assurances,
both specifications define protocols for reliable message delivery and use well-
known mechanisms from computer networks such as message acknowledgment
and message numbers. A detailed comparison of both specifications can be
found in [46, 139].

Web Service Transactions

In several business scenarios, it is important to coordinate multi-party message
exchanges between distributed participants, which can be Web Services and
their clients. When these message exchanges should achieve a common objective
coordination becomes important.

WS-Coordination [63] provides a generic framework for coordinating dis-
tributed activities. WS-Coordination is extensible, i.e., new coordination pro-
tocols (e.g., for short-running atomic transactions) can be plugged into the
framework. WS-Coordination defines three main elements:

• The coordination context is a shared context that represents the coordi-
nation. It includes a context identifier and the address of the registration
service.

• The activation service is used by the initiator of the coordination to create
a coordination context, which will be propagated to the participants as
part of the application messages.

16

• The registration service is used by participants to register for a specific
coordination protocol of a given coordination type, e.g., for the completion
protocol of atomic transactions [137].

There are two WS-* specifications that leverage WS-Coordination: WS-
AtomicTransaction [137], which supports short-running atomic transactions and
WS-BusinessActivity [138], which supports long-running compensation-based
transactions.

The atomic transaction coordination type comprises three protocols for sup-
porting atomic distributed transactions with the traditional ACID properties:
a completion protocol to initiate the commitment of a transaction and two
2-Phase-Commit protocols (volatile and durable) to decide whether the trans-
action should be committed or aborted.

The business activity coordination type supports long-running distributed
transactions. Unlike atomic transactions, business activities, which model cross-
organizational transactions, do not lock resources until the completion of the
transaction. These transactions are characterized by relaxed isolation, i.e., in-
termediary results can be seen by other transactions. If a business activity
has to be rolled back, the already completed parts of the transaction must be
reversed using appropriate compensation logic.

WS-BusinessActivity defines two coordination types: AtomicOutcome, in
which the transaction coordinator directs all participants uniformly to either
close or compensate their work, and MixedOutcome, in which the coordinator
can direct some participants to close and some others to compensate.

In addition, WS-BusinessActivity defines two coordination protocols. In the
BusinessAgreementWithParticipantCompletion protocol, a participant informs
the coordinator when it completes his/her part of the transaction. Then, the
coordinator tells the participant to close or compensate. In BusinessAgreemen-
tWithCoordinationCompletion, the participant waits until the coordinator tells
him/her to complete.

Web Service Policy

Web Services need a means to publish their QoS requirements, capabilities, and
preferences to potential clients. For example, a Web Service may need to tell
clients that it supports reliable messaging and requires confidentiality through
message encryption.

Such policies cannot be expressed in WSDL, which covers only the func-
tional interface of a Web Service. WS-Policy [113] provides a generic model
and an extensible XML syntax for describing the policies of a Web Service in a
declarative way.

In WS-Policy, a policy expression is a collection of one or more policy asser-
tions that can be combined using policy operators. A policy assertion represents
a domain-specific capability, requirement, or preference. Assertion languages
such as WS-SecurityPolicy [44] define domain-specific assertions, e.g., for secu-
rity, reliable messaging, transactions, etc.

The WS-PolicyAttachment [45] specification defines mechanisms for associ-
ating policies with subjects such as WSDL documents, UDDI entries, or any
other resource. In internal attachment, policy annotations are used in an XML

17

document to directly attach policies to subjects that are defined in that docu-
ment. In external attachment, policies are attached to subjects using an external
binding from outside the documents where the subjects are defined.

2.3.3 Web Service composition

One of the promises of Service-Oriented Computing is to support a rapid and
low-cost composition of services into sophisticated applications. Web Service
composition provides a means to combine existing Web Services according to
some composition pattern in order to solve a complex problem, to achieve a
business goal, or to provide a new service in general [2, 60].

Reuse and reducing complexity are the main motivations behind Web Service
composition. With the increasing number of available Web Services, reusing
existing Web Services becomes more attractive than writing new ones. In some
cases, reuse is not optional, e.g., one must use the Web Services of credit card
companies to validate credit card numbers. Moreover, it is possible that a
complex functionality, which is required by a client, cannot be provided by a
single Web Service but by an aggregation of several Web Services.

Web Service composition provides a suitable mechanism for application in-
tegration in intra-enterprise (Enterprise Application Integration) and cross-
enterprise (Business-to-Business) settings [2, 60]. In addition, it enables a more
rapid and efficient integration of distributed and heterogeneous applications
than traditional Workflow Management and Enterprise Application Integration
technologies [2].

Web Service composition languages

Web Service composition spans two important areas: the specification by means
of a composition language on the one hand, and the execution by means of an
appropriate runtime environment on the other hand.

To specify a Web Service composition, one needs to define the control and
data flow around a set of Web Service interactions between the parties that are
involved in the composition.

Several approaches have been proposed for the specification of Web Service
compositions, e.g., by using activity diagrams [167], state charts [19], petri nets
[92], process algebras [80, 162], workflow processes [59, 123], etc.

Programming languages such as Java can also be used to implement a Web
Service composition. However, programmers would be confronted with many
low-level tasks such as converting program data from and to XML, creating
SOAP messages and setting their payload, handling faults, assigning messages
to different conversations, etc.

Instead of using programming languages, process-oriented Web Service com-
position languages such as WSFL [123] and BPEL [59] provide high-level pro-
gramming concepts that allow programmers to focus on the business logic of a
Web Service composition and free them from handling low-level concerns. These
languages define the Web Service composition using a workflow process.

18

Orchestration and Choreography

Web Service composition encompasses orchestration and choreography, which
are two different but overlapping concepts corresponding to different viewpoints
on a Web Service Composition [71, 150].

Orchestration describes an executable business process that consists of sev-
eral interactions from the view point of a single participant. An orchestration
specifies the ordering of interactions between the party that executes the busi-
ness process and the other Web Services that participate in the composition.
Several process-oriented orchestration languages have been proposed such as
BPML [12], WSFL [123], and BPEL [59].

Choreography describes interaction protocols, i.e., the public message ex-
changes between Web Services from a global view point. Choreography is more
collaborative than orchestration. Unlike an orchestration, a choreography tracks
only the observable public message exchange and does not reveal internal com-
putations and data transformations; thus choreographies are not executable.
Some choreography languages have been proposed such as WSCI [14] and the
more recent WS-CDL [191].

2.4 The Business Process Execution Language (BPEL)

The Business Process Execution Language for Web Services (BPEL4WS or
BPEL for short) [59] is a process-oriented Web Service composition language,
in which the implementation of a composite Web Service is specified using a
workflow process. The composition in BPEL is recursive, i.e., the result of the
composition is also a Web Service.

BPEL 1.0 was proposed in July 2002 by BEA, IBM, and Microsoft as the
result of combining two composition languages: IBM’s Web Service Flow Lan-
guage (WSFL) [123] and Microsoft’s XLANG [176]. In April 2003, BPEL 1.1
was submitted to OASIS for standardization. The output of the BPEL Techni-
cal Committee [134], which was renamed to WS-BPEL 2.0 [13] to better fit into
the landscape of the Web Service specifications, has been released for public
review in August 2006.

A BPEL workflow process consists of activities for interacting with the Web
Services that participate in the composition together with a specification of
control and data flow around these interactions.

BPEL supports two kinds of processes: executable processes, which define the
business logic of a private orchestration and abstract processes, which define the
public interaction protocol of the composite Web Service. An abstract process
can be thought of as a projection of an executable process that omits internal
implementation details and keeps only the necessary information on how to
interact correctly with the Web Service. For this thesis, only executable BPEL
processes are relevant.

2.4.1 Basic concepts

BPEL is a special workflow language, where all participants are Web Services
and their clients. In addition, all applications that perform the activities are
Web Services. The basic concepts of BPEL are activities, variables, and part-
ners.

19

Activities

BPEL differentiates basic activities and structured activities. Basic activities are
used, e.g., for interacting with Web Services (e.g., invoke) and for manipulating
data (e.g., assign). Structured activities are composite, i.e., they contain other
activities.

The core of a BPEL process are the messaging activities, which define the
message exchanges between the different parties in the composition. The receive
activity blocks the process and waits until a client request is received. The invoke
activity calls an operation on a partner Web Service. The reply activity sends
a response to a client of the composite Web Service.

Structured activities such as sequence (sequential execution), flow (parallel
execution), and switch (conditional execution) define the execution order of their
nested activities. They correspond to the process algebraic style of workflow
specification, which is derived from process calculi [98, 133].

In the flow activity, additional ordering constraints can be expressed by using
links (i.e., control flow edges connecting a source activity with a target activity).
A link specifies that the target activity can only execute after the source activity
completes; it may also have a boolean transition condition attached to it [116].
flow and link incorporate the graph style of workflow specification in BPEL.

Partners

They represent the parties that a BPEL process interacts with such as the
clients and the Web Services that are called by the process. A partner link is an
instance of a typed connector between two WSDL port types specifying what
the BPEL process provides to and what it expects from the partner. A partner
link can be considered as a channel for peer-to-peer conversation between the
process and the partner [116, 192].

The composition model of BPEL is type-based, i.e., Web Services are com-
posed at the port type level and not at the port level. The BPEL process refers
only to the abstract WSDL interface of the partners. The binding of partners
to concrete Web Services is done by the BPEL runtime according to various
binding approaches at design time, deployment time, or runtime [192].

Variables

In BPEL, the workflow data is read from and written to XML typed variables.
These variables may be read or written by messaging activities or by the data
manipulation activity assign.

Messaging activities specify input variables and/or output variables. For
instance, an invoke activity may specify an input variable that contains the
parameters of the respective Web Service call on a partner and an output variable
that contains the return data of that call. The assign activity is used to move
data between variables in an atomic manner.

2.4.2 Advanced concepts

In addition to the basic constructs, BPEL defines constructs for handling faults,
compensating already completed activities, matching SOAP messages with pro-
cess instances, and reacting to external events.

20

The unit of fault handling and compensation handling in BPEL is the scope,
which is a structured activity that provides context for fault handling and com-
pensation handling to its nested activities.

Fault handling

BPEL processes have to deal with several kinds of faults (e.g., those resulting
from partner invocations or raised as part of the business logic of the process).
Fault handlers are BPEL constructs that are attached to scopes to catch faults.
If a fault occurs during the execution of a scope, the activity of the corresponding
fault handler will be executed. If no matching fault handler is found, the fault
will be thrown to the parent scope until a matching handler is reached or the
process terminates.

Compensation handling

Long-running BPEL processes could not be always completed in a single atomic
transaction. Therefore, if a fault occurs at some point during the process exe-
cution, it is necessary to reverse the activities that were successfully completed
until that point. Compensation handlers are BPEL constructs for undoing the
effect of successfully completed process activities. Like fault handlers, compen-
sation handlers are defined at the scope level.

A compensation handler, which is associated with a scope s, can be called
explicitly using the compensate activity, e.g., from a fault handler of a parent
scope of s. When a fault occurs in a parent scope of s and no fault handler
matches that fault, the default fault handler of the parent scope of s calls
implicitly the compensation handlers of all completed child scopes (including
the compensation handler of s) in reverse order of completion.

Correlation sets

As several instances of the same BPEL process may be running concurrently
(each of them talking to a different client) a mechanism is needed to correctly
route SOAP messages to the respective process instance. BPEL introduces
correlation sets for that purpose.

The correlation mechanism works as follows: correlation sets are defined as
groups of WSDL-typed properties, which are named and mapped to parts of the
messages that the process sends or receives. Then, correlation sets are attached
to messaging activities with a flag indicating whether the activity will initiate
the correlation set.

When an incoming SOAP message is received, it can be routed to the corre-
sponding process instance by matching the specific parts of that message with
the values of the variables of the running process instances.

Event handling

BPEL introduces event handlers to support asynchronous events that take place
concurrently to the process execution. Event handlers specify an activity that
should be executed when a certain event occurs such as a message that comes
in (message events) or a timer that goes off (alarm events).

21

2.4.3 BPEL implementations

To execute a Web Service composition, the BPEL process must be deployed on
a BPEL workflow engine or orchestration engine, which provides the runtime
environment for BPEL processes.

The orchestration engine is responsible for managing the process lifecycle
and the process instances. This means that the engine creates a new process
instance when an incoming SOAP message matches a startable1 receive activity.
The engine terminates the process instance once the last activity of the process
is completed. The engine is also responsible for binding partners to specific Web
Services and executing the process instances according to the process definition.

To date, many BPEL engines are available from both the Open Source com-
munity and industry. ActiveBPEL [127], PXE [110], and Bexee [83] are open
source engines that are available for free. In addition, several commercial en-
gines are on the market such as IBM WebSphere Process Server [103], Oracle
BPEL Process Manager [143], Microsoft BizTalk Server 2006 [132], OpenLink
Virtuoso [169], and Cape Clear Orchestrator [52].

When this PhD work started, IBM BPWS4J [61, 104] was the only available
BPEL engine. That engine was released shortly after the BPEL 1.0 specifi-
cation. IBM BPWS4J is especially relevant for this PhD work because the
implementation of AO4BPEL was built on top of it.

IBM BPWS4J is packaged as a web application that runs under Tomcat.
It has a Web-based user interface, which allows users to deploy, undeploy, and
manage BPEL processes. To deploy a process the user has to specify the process
definition (.bpel file) and the interfaces of the composite Web Service and its
partner Web Services (.wsdl files).

2.5 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [119] is a programming paradigm that
explicitly addresses the modularization of crosscutting concerns in complex soft-
ware systems. The hypothesis underlying AOP is that modularity mechanisms
so far support the hierarchical decomposition of software according to a single
criterion, based for instance on the structure of data (object-based decomposi-
tion) or on the functionality to be provided (functional decomposition).

Crosscutting modularity mechanisms [128] supported by AOP aim at break-
ing with the “tyranny of a single decomposition” [175]. They enable a modular
implementation of crosscutting concerns. Several approaches to aspect-oriented
software development were presented based on a common modeling framework
by Masuhara and Kiczales [128]. These approaches were analyzed and classified
into different categories. In this thesis, when talking about AOP, the pointcut-
advice model [128] is meant.

AOP introduces a new unit of modularity called aspect aimed at modular-
izing crosscutting concerns in complex systems by means of three key concepts:
join points, pointcuts and advice.

Join points are well-defined points in the execution of a program [118].
Which points in the execution of a program are considered as join points is

1A receive activity with the createInstance attribute set to yes.

22

determined by the join point model of an aspect-oriented language. Since As-
pectJ is an aspect-oriented extension of Java, its join point model defines points
in the execution of object-oriented programs such as method calls, constructor
calls, field read/write, etc.

In order to modularize crosscuts, a means is needed to identify related join
points. Pointcuts, which are predicates on the attributes of join points, can
select related method execution points based on the type of their parameters
or return values, on matching patterns in the names or modifiers, etc. Similar
mechanisms are available to select sets of related setter and getter execution
points, sets of constructor calls and executions, exception handlers, etc. Current
AOP languages come with predefined pointcut constructs (known as pointcut
designators in AspectJ).

The common crosscutting functionality at a set of related join points is
specified by means of advice. The advice is a piece of code that is executed
whenever a join point in the set identified by the respective pointcut is reached.
The advice can be executed before, after, or instead of, the join points that are
selected by that pointcut. This corresponds to before, after and around advice
types in AspectJ.

With around advice, the aspect can integrate the further execution of the
intercepted join point in the middle of some other code to be executed around
it. In AspectJ, the keyword proceed is used in the advice as place holder for the
join point.

Advice code also has access to the execution context at join points that
trigger its execution. In addition to identifying relevant points in the program
execution, a pointcut may also declare what part of the join point context is
made available to the advice: AspectJ provides dedicated language constructs
for exposing the target of a method call, the arguments passed to the call, etc.

An aspect module consists, in general, of several pointcut definitions and
advice associated with them. In addition, it may define state and methods,
which in turn can be used within the advice code.

public aspect Logging
{

//where ?
pointcut loggableMethods(Object o): call(∗ bar (..)) && this(o);

//when ?
before(Object o): loggableMethods(o)
{

//what ?
System.out. println (”bar called from object ” + o.toString ());
}
}

Listing 2.1: A logging aspect in AspectJ

Listing 2.1 shows a simple logging aspect in AspectJ. This aspect defines
a pointcut, loggableMethods, which specifies where the logging concern should
join the execution of the base functionality. In this example, the interesting join
points are the calls (the call pointcut designator) to all methods named bar,
independently of the class they are defined in, their return type (the wildcard

23

“*” is used to abstract over the class/method names and return type), as well as
the number and type of the parameters (the symbol “..” serves to abstract over
parameters of the call). The object that executes the method call is exposed to
the advice using the pointcut designator this; it is bound to the object o.

The advice specifies when and what behavior to execute at the selected join
points. The advice associated with the pointcut loggableMethods prints out a
logging message before executing any of the join points that are matched by
the pointcut. It also uses the context of the join point by calling the method
toString on the target of the current method call join point.

The logging aspect enables the logging concern to be modularized in a sep-
arate module. If the logging functionality is required in other places, one just
has to modify the pointcut definition. In a non-AOP object-oriented solution,
it would be necessary to go through all locations where logging is required and
modify the classes appropriately. With aspects, conversely, a single piece of
code needs to be changed, and the logging functionality can be switched on and
off without modifying the application code in an invasive way.

Integrating aspects into the execution of the base functionality is called weav-
ing. In static AOP approaches such as AspectJ, weaving happens at compile
time or load time. In dynamic AOP approaches [11, 22, 24, 153], aspects can
be deployed and undeployed at runtime. Thus, dynamic AOP allows aspects to
adapt the behavior of applications to changes in the requirements and runtime
environment [97, 164].

2.6 Conclusion

This chapter provides the necessary background knowledge for understanding
this thesis. Specifically, a short introduction to Workflow Management, Web
Services, and Aspect-Oriented Programming was given.

Workflow management and workflow languages are relevant for this thesis,
which addresses the problems of crosscutting modularity and change modularity
in workflow languages in Chapter 3. In that chapter, the simple graph-based
language and BPEL will be used as two examples of workflow languages.

The Web Service protocol stack is important not only because BPEL is used
as an example of workflow languages, but also for understanding the process
container framework that is presented in Chapters 6 and 7. In that framework,
AO4BPEL aspects are used to provide support for security, reliable messaging,
and transactions to BPEL processes.

Aspect-Oriented Programming is also a key technology in this thesis, which
introduces aspect-oriented workflow languages in Chapter 4 to solve the prob-
lems of crosscutting concern modularity and change modularity in current work-
flow languages. This thesis will also present the design and implementation of
AO4BPEL, an aspect-oriented workflow language for Web Service composition,
in Chapter 5.

24

CHAPTER 3

Problem Statement

3.1 Introduction

This chapter presents the limitations of current workflow languages with respect
to crosscutting concern modularity and change modularity. These limitations
will be explained using a travel agency scenario and two workflow languages: a
visual graph-based and the BPEL language for Web Service composition.

The graph-based workflow language illustrates the problems that arise at
the activity level when crosscutting concerns are expressed using the constructs
of current workflow languages. This language supports only the functional and
the behavioral workflow perspectives.

In addition, the BPEL workflow language for Web Service composition is
chosen as a representative for state of the art workflow languages. BPEL sup-
ports the informational, the organizational, and the operational workflow per-
spectives. As a result, BPEL shows how the scattering and tangling problems
span other workflow constructs beyond activities (the functional perspective)
such as variables (the informational perspective) and partners (the organiza-
tional and operational perspectives).

In fact, current workflow languages, represented by the visual graph-based
language and BPEL, lack means to modularize concerns that cut across pro-
cess boundaries such as activity execution time measurement, data collection
for billing, and security. Consequently, scattering and tangling problems arise.
These problems lead to monolithic and complex workflow schemes that are hard
to understand, to maintain, to change, and to reuse.

In addition, current workflow languages and current workflow management
systems do not support the expression of workflow changes in separate modules
as first-class entities. In static workflow languages, workflow changes are inte-
grated directly into the workflow schema. In adaptive workflow languages, there
is also no module for encapsulating the workflow constructs that implement a
given workflow change. Dynamic changes are merely supported by low-level
operations for adding/deleting activities and transitions, i.e., workflow changes

25

are not expressed at a high abstraction level as first-class entities. Moreover,
workflow languages lack a module concept for encapsulating the decision about
the activities and processes that are affected by a given change.

The lack of support for change modularity in current workflow languages
makes understanding and tracing changes a difficult task, e.g., to understand a
workflow change one has to compare the workflow schemes before and after the
change has been accommodated. Moreover, it has a negative impact on change
management, e.g., to undo some temporary change, one would have to migrate
the running workflow instances from one workflow schema to another.

The remainder of this chapter is organized as follows. Section 3.2 introduces
a travel agency scenario, which will be used throughout this thesis. In Section
3.3, the problems of crosscutting concern modularity are illustrated using several
examples. Section 3.4 elaborates on change modularity in static and adaptive
workflow management systems. Section 3.5 concludes this chapter.

3.2 A Travel Agency Scenario

Consider a travel agency that uses the workflow management technology to
automate some of its business processes. For example, when a customer sends
a flight request to the travel agency, a flight process is started, which interacts
with the information systems of several airline companies to find flights that
match the customer needs. A hotel process is used to search for available hotel
rooms by interacting with the information systems of several hotels chains. A
travel package process is used to compose flight offers and hotel accommodations
into full vacation packages.

The workflow processes mentioned above take as input the necessary pa-
rameters from the customer search request (e.g., departure city and destination
city) and return one or more offers, so that each offer has a unique offer id.
If the customer wants to book a given offer, she specifies the offer id and the
payment information. This starts another workflow process for booking, which
interacts with the airline companies, and/or hotels chains, and a credit card
payment company to complete the booking.

In the following, the flight process and travel package process are modeled
using a graph-based workflow language. Then, these processes are implemented
in BPEL, with the assumption that the airline companies, the hotel chains, and
the credit card company expose their services to partners as Web Services.

3.2.1 Workflow graphs for the travel agency scenario

The graph-based workflow language that was presented in Section 2.2.2 of Chap-
ter 2 will be used to illustrate the issues of crosscutting concern modularity in
workflow processes graphically and independently of any specific language. This
graph-based language was chosen because it shows well the activity graph, which
is the basis for the discussion on crosscutting concerns in Section 3.3. However,
the observations that will be made apply also to the other kinds of workflow
languages.

In Figure 3.1, the visual graph-based language is used to model the flight
process and the travel package process. The flight process, on the left hand
side of this figure, starts upon receiving a flight request from a customer. Once

26

such request arrives, two flight search activities interact with airline companies
(Berlin Air and Tunis Air) to find flights matching the customer needs. The
subsequent activity make offer is a composite activity that contains nested
activities, e.g., for assigning an offer id to each available flight. The activity
send flight offers sends the previously generated flight offers to the customer.

The travel package process, shown on the right hand side of Figure 3.1 is
quite similar to the flight process. After receiving a client request for a vacation
package, this process interacts with Berlin Air to find a flight, and then with the
hotel portal MyHotels to find an accommodation. In addition to assigning an
offer id, the composite activity make offer of this process incorporates logic for
combining the available flights and the hotel accommodations into full vacation
packages. The activity send package offers sends the vacation package offers to
the customer.

flight process

 receive
flight request

 Flight search
Berlin Air

send flight
offers

 Flight search
Tunis Air

 Make
 Offer

receive
package request

 Flight search
Berlin Air

send package
offers

 Hotel search
MyHotels

 Make
 Offer

package process

Figure 3.1: Two workflow processes in the travel agency scenario

3.2.2 The travel agency scenario in BPEL

Assuming that the partner companies of the travel agency provide their services
using Web Services, the different workflow processes can be implemented with
the BPEL language. This workflow-based Web Service composition language
allows the travel agency to compose the Web Services of airline companies,
hotel chains, and credit card companies. The composition in BPEL is recursive,
i.e., the Web Service composition specified by a BPEL process is exposed as a
Web Service. That is, the composition specified by the flight process is exposed
as a Web Service operation getFlight, the composition specified by the travel
package process is exposed as a Web Service operation getTravelPackage, and
the composition specified by the hotel process is exposed as a Web Service
operation getHotel, as shown in Figure 3.2.

In this figure, the workflow processes are represented by horizontal bars
that contain ovals representing the activities. The dashed lines connecting the
processes to the Web Services on the right hand side show the Web Services that
are invoked from each process. The operations of the composite Web Service of

27

the travel agency are called from a Web application, which is part of the portal
of the travel agency.

Travel Agency

Berlin Air

Tunis Air

MyHotels
getHotel

 getFlight

getTravel
Package

 findARoom

searchFlight

 findAFlight

 BPEL Engine

book
 bookAFlight

 book

 bookRoom

MagicHotels

book

 getRoom

 pay

 Visa
 checkCard

Clients

Web
App

 Partners

Figure 3.2: The travel agency processes in BPEL

The operation getTravelPackage is implemented by the travel package pro-
cess, which composes the Web Services of Berlin Air and MyHotels. The oper-
ation getFlight is implemented by the flight process, which composes the Web
Services of Berlin Air and Tunis Air. The operation getHotel is implemented
by the hotel process, which composes the Web Services of the hotel chains My-
Hotels and MagicHotels. These operations return one or more offers; each of
them contains a description of the flight, the accommodation, or the vacation
package in addition to a unique offer id that can be used later for booking.

To book a certain offer, the client calls the Web Service operation book,
which is also implemented by a BPEL process that composes the hotel and air-
line partner Web Services of the travel agency and the Visa card payment Web
Service. The operation book takes two parameters: the offer id (that was previ-
ously returned by one of the operations getFlight, getHotel, or getTravelPackage)
and the credit card information.

Listing 3.1 shows the travel package process, which implements the operation
getTravelPackage. This process declares three partner links that respectively
connect the composition to the client, Berlin Air Web Service, and MyHotels
Web Service (lines 3–5). It also declares six variables for holding the client
request and response messages, as well as the request and response messages
for the invocations of the operations findAFlight and findARoom on the Web
Services of Berlin Air and MyHotels (lines 8–13).

The main activity in this process is the sequence activity packageSequence
(lines 15–49), which contains a receive activity that matches the operation get-
TravelPackage and an assign activity for copying data from the variable clien-
trequest to the variables flightrequest and hotelrequest (lines 19–25).

In addition, the activity packageSequence contains two invoke activities for
calling Berlin Air Web Service (lines 26–28) and MyHotels Web Service (lines
29–31). Moreover, another assign activity is used to copy the flight and hotel
data from the variables flightresponse and hotelresponse into the variable clien-

28

1 <process name=”travelPackage”>
2 <partnerLinks>
3 <partnerLink name=”client” partnerLinkType=”clientPLT” .../>
4 <partnerLink name=”flight” partnerLinkType=”flightPLT” .../>
5 <partnerLink name=”hotel” partnerLinkType=”hotelPLT” .../>
6 </partnerLinks>
7 <variables>
8 <variable name=”clientrequest” messageType=”findPackageRequest”/>
9 <variable name=”clientresponse” messageType=”findPackageResponse”/>

10 <variable name=”flightrequest” messageType=”findAFlightRequest”/>
11 <variable name=”flightresponse” messageType=”findAFlightResponse”/>
12 <variable name=”hotelrequest” messageType=”findARoomRequest”/>
13 <variable name=”hotelresponse” messageType=”findARoomlResponse”/>
14 </variables>
15 <sequence name=”packageSequence”>
16 <receive name=”receiveClientRequest” partnerLink=”client”
17 portType=”travelServicePT” operation=”getTravelPackage”
18 variable =”clientrequest” createInstance =”yes”/>
19 <assign>
20 <copy>
21 <from variable=”clientrequest” part=”deptDate”>
22 <from variable=” flightrequest ” part=”DepartOn”>
23 </copy>
24 ...
25 </assign>
26 <invoke name=”invokeFlightServiceTP”
27 partnerLink=”flight” portType=”flightPT” operation=”findAFlight”
28 inputVariable =” flightrequest ” outputVariable=”flightresponse”/>
29 <invoke name=”invokeHotelServiceTP”
30 partnerLink=”hotel” portType=”HotelPT” operation=”findARoom”
31 inputVariable =”hotelrequest” outputVariable=”hotelresponse”/>
32 <assign>
33 <copy>
34 <from variable=”flightresponse” part=” flightDetails ”/>
35 <to variable =”clientresponse” part=” flightInfo ”/>
36 </copy>
37 <copy>
38 <from variable=”hotelresponse” part=”roomDetails”/>
39 <to variable =”clientresponse” part=”hotelInfo”/>
40 </copy>
41 <copy>
42 <from expression=”concat(getVariableData(’ flightresponse ’,’ flightnum ’),
43 getVariableData (’ hotelresponse ’,’ id’))”/>
44 <to variable =”clientresponse” part=”offerid”/>
45 </copy>
46 </assign>
47 <reply name=”replyToClient” partnerLink=”client” portType=”travelServicePT”
48 operation=”getTravelPackage” variable=”clientresponse” />
49 </sequence>
50 </process>

Listing 3.1: The travel package process in BPEL

29

tresponse (lines 32–46). This assign activity also creates an offer id for the travel
package by concatenating the flight number and the product number returned
by the hotel Web Service (lines 41–45). The reply activity (lines 47–48) sends
the travel package offer to the client.

The specifications of the flight process and the hotel process in BPEL are
similar to the travel package process, whereby the flight process invokes the
Web Services of Tunis Air and Berlin Air, and the hotel process invokes the
Web Services of MyHotels and MagicHotels.

3.3 Crosscutting Concern Modularity

In this section, some examples of crosscutting concerns will be presented in the
context of the travel agency scenario. Several limitations are observed when
implementing these concerns with the graph-based language and with BPEL.

3.3.1 Case studies

To motivate the need for mechanisms for crosscutting modularity, the implemen-
tation of some examples of crosscutting concerns will be studied. Concretely,
data collection for billing, measurement of activity execution time, and security
will be considered. One could also take other examples of crosscutting concerns
for the following discussion.

The implementation of these concerns cuts across several processes and can-
not be expressed in a modular way when using the typical constructs of current
workflow languages. In conformance with the definition given in [120], the term
modular means in a localized manner and with well-defined explicit interfaces
to the rest of the composition logic.

Data collection for billing

One assumes that the flight Web Service of Berlin Air is not provided for free.
Several pricing models are conceivable. For example, one alternative is to charge
only clients who use the service more than 100 times per day. Another alter-
native pricing model is to charge clients who use the Web Service to search for
flights without booking any flights subsequently.

When such pricing policies apply, the travel agency will get a bill from Berlin
Air but it has no means to check whether the bill is accurate or not. To verify
the bills accuracy, the travel agency decides to count how many times the flight
search activity with Berlin Air has been executed from within any workflow
process. Thereby, all occurrences of the flight search activity in any process and
all instances of these processes must be taken into account.

To implement the data collection for billing functionality, the workflow pro-
grammer has to examine all workflow processes of the travel agency. Both the
flight process and the travel package process contain a flight search activity,
which interacts with Berlin Air. After each occurrence of that activity, the
workflow programmer has to add a new activity for incrementing a counter, as
shown in Figure 3.3.

To integrate the data collection for billing functionality with the BPEL im-
plementation of the flight process and the travel package process, the workflow

30

programmer has to find all processes that contain an invoke activity, which calls
the operation findAflight on Berlin Air Web Service.

flight process

 receive
flight request

 Flight search
Berlin Air

send flight
offers

 Flight search
Tunis Air

 Make
 Offer

receive
package request

send package
offers

 Hotel search
MyHotels

 Make
 Offer

package process

 increment
counter

 Flight search
Berlin Air

 increment
counter

Data collection
for billing

Figure 3.3: Data collection for billing

1 <process name=”travelPackage” .../>
2 ...
3 <partnerLink name=”CounterWS” partnerLinkType=”CounterPLT” .../>

4 ...
5 <variable name=”increaseRequest” messageType=”increaseCounterInput”/>
6 ...
7 <sequence name=”packageSequence”>
8 <receive name=”receiveClientRequest” .../>
9 <assign>...</assign>

10 <invoke name=”invokeFlightServiceTP” operation=”findAFlight” .../>
11 <sequence name=”collect billing data”>

12 <assign>
13 <copy>
14 <from expression=”1”/>
15 <to variable =”increaseRequest” part=”increaseBy”/>
16 </copy>
17 </assign>
18 <invoke partnerLink=”CounterWS” portType=”CounterPT”
19 operation=”increaseCounter” inputVariable=”increaseRequest” .../>
20 </sequence>
21

22 <invoke name=”invokeHotelServiceTP” operation=”findARoom” .../>
23 ...
24 <reply name=”reply” partnerLink=”client” .../>
25 </sequence>
26 </process>

Listing 3.2: Collecting billing data in the travel package process

31

1 <process name=”flightProcess” .../>
2 ...
3 <partnerLink name=”CounterWS” partnerLinkType=”CounterPLT” .../>

4 ...
5 <variable name=”increaseRequest” messageType=”increaseCounterInput”/>
6 ...
7 <sequence name=”flightSequence”>
8 <receive name=”receiveClientRequest” .../>
9 ...

10 <invoke name=”invokeFlightServiceFP” operation=”findAFlight” .../>
11 <sequence name=”collect billing data”>

12 <assign>
13 <copy>
14 <from expression=”1”/>
15 <to variable =”increaseRequest” part=”increaseBy”/>
16 </copy>
17 </assign>
18 <invoke partnerLink=”CounterWS” portType=”CounterPT”
19 operation=”increaseCounter” inputVariable=”increaseRequest” .../>
20 </sequence>
21

22 <invoke name=”invokeTunisair” operation=”searchFlight” .../>
23 ...
24 <reply name=”reply” partnerLink=”client” .../>
25 </sequence>
26 </process>

Listing 3.3: Collecting billing data in the flight process

After each one of these activities, the programmer has to add an invoke
activity that calls an appropriate Web Service to increment a counter as shown
in Listings 3.2 and 3.3 (lines 18–19). Moreover, before each new invoke activity,
the programmer has to add an assign activity that sets the input data of that
invoke correctly (lines 12–17).

In addition, the workflow programmer has to add appropriate partner links
and variables for supporting the data collection for billing concern. In both
processes, the programmer adds a partner link to the counting Web Service
(line 3) and a variable increaseRequest (line 5) to held the input parameters of
the invoke activity that calls increaseCounter.

Data collection for billing is crosscutting because it happens at different
points in the execution of activities in different workflow processes. The BPEL
code, which includes activities, variables, and partners, belonging to that con-
cern is scattered across two process modules and cannot be encapsulated in a
separate module. It is unclear which partners, variables, and activities pertain
to which concern and where the logic for a given concern is executed. Moreover,
the BPEL code that implements data collection for billing is tangled with the
BPEL code that implements other concerns.

Whilst Figure 3.3 shows the scattering and tangling problems at the activity
level only, Listings 3.2 and 3.3 show that the scattering and tangling problems
span also the variables and the partners that are required for supporting data

32

collection for billing. This is because the graph-based language supports only
the functional and behavioral perspectives, whereas BPEL supports also the
informational perspective (variables) and the organizational/operational per-
spectives (partners).

Scattering and tangling result from the lack of a module that encapsulates
(i) the logic that belongs to the data collection for billing concern and (ii) the
specification of the interface of the latter with the rest of the travel portal logic.

The data collection logic includes:

• the new sequence activity (lines 11–20)

• the declaration of partner links (line 3) involved in realizing the collection
of data

• the declaration of variables (line 5) involved in realizing the collection of
data

• the interface of the data collection concern with the rest of the travel
portal, i.e., the specification of the points during the execution of the base
workflow processes, where data collection should be triggered

Due to the lack of a module that encapsulates the concern data collection for
billing, one has to add the same sequence activity to increment the counter after
each invoke activity that calls Berlin Air Web Service, and the same partner
link and variable definitions to each of the affected processes.

Measurement of activity execution time

In the context of workflow monitoring, organizations that deploy workflows are
usually interested in measuring the execution time of certain process activities.
If the workflow management system at hand does not provide support for mon-
itoring activity execution time, the workflow programmer must implement this
functionality by adding appropriate activities to the workflow process. That is,
one activity for starting a timer will be added before the monitored process ac-
tivity, and one activity for stopping a timer will be added after it. In Figure 3.4,
the flight process and the travel package process are extended with activities for
measuring the execution time of the flight search activity, which interacts with
Berlin Air.

In the case of BPEL workflows, the monitored activity can be a messaging
activity or another activity such as sequence, assign, etc. To measure the execu-
tion time of a BPEL activity X, one could set up an auditing Web Service and
invoke appropriate operations on it to start (respectively stop) a timer before
(respectively after) each occurrence of X.

To measure the execution time of the invoke activity that calls Berlin Air
Web Service, the workflow programmer modifies the flight process and the travel
package process as shown in Listings 3.4 and 3.5.

In both processes, the workflow programmer adds an invoke activity (lines
18–19) that calls the operation startTimer on the auditing Web Service before
each occurrence of the monitored activity. Similarly, the programmer adds an
invoke activity (lines 29–30) that calls the operation stopTimer on the auditing
Web Service after each occurrence of the monitored activity.

33

flight process

 receive
flight request

 Flight search
Berlin Air

send flight
offers

 Flight search
Tunis Air

 Make
 Offer

receive
package request

send package
offers

 Hotel search
MyHotels

 Make
 Offer

package process

 Stop Timer

Measurement of
activity execution time

 Start Timer

 Flight search
Berlin Air

 Start Timer

 Stop Timer

Figure 3.4: Activity execution time measurement

Both operations startTimer and stopTimer take a parameter, which iden-
tifies the monitored activity. The input data of the invoke activities that call
these operations is set using appropriate assign activities (lines 12–17 and lines
23–28).

In addition to activities, the workflow programmer adds to both processes
a partner link to the auditing Web Service (line 3) and two variables (lines
5–6), which contain the input parameters of the invoke activities that call the
operations startTimer and stopTimer.

The measurement of activity execution time is also a crosscutting concern.
The scattering and tangling problems in this case are even worse than in the case
of data collection for billing because the new activities for measuring activity
execution time are required before and after each occurrence of the monitored
activity.

Security

Workflow processes have several security requirements such as confidentiality,
integrity, authentication, anonymity, and separation of duties [185]. In [140],
three levels of workflow security are presented: Level 1 security (database-level)
ensures that each activity is performed by an authorized subject, i.e., the subject
is granted access to the activity data. Level 2 security (workflow-level) ensures
that access to that data is granted only during the execution of the respec-
tive activity. Level 3 security (application-level) focuses on application-specific
security requirements.

In the following, workflow-level and application-level security will be con-
sidered. Whilst some security requirements can be supported in layers below
the workflow level, (e.g., in the database, in the messaging infrastructure, or
in the application that implements an activity), workflow-level and application-
level security requirements have to be addressed at the workflow process level,

34

1 <process name=”travelPackage” .../>
2 ...
3 <partnerLink name=”AuditingWS” partnerLinkType=”AuditingPLT” .../>

4 ...
5 <variable name=”startTimerRequest” messageType=”startTimerInput”/>
6 <variable name=”stopTimerRequest” messageType=”stopTimerInput”/>
7 ...
8 <sequence name=”packageSequence”>
9 <receive name=”receiveClientRequest” .../>

10 <assign>...</assign>
11 <sequence name=”startTimer Sequence”>

12 <assign>
13 <copy>
14 <from expression=”’invokeBerlinAirTP’”/>
15 <to variable =”startTimerRequest” part=”activityName”/>
16 </copy>
17 </assign>
18 <invoke partnerLink=”AuditingWS” portType=”AuditingPT”
19 operation=”startTimer” inputVariable =”startTimerRequest”/>
20 </sequence>
21 <invoke name=”invokeFlightServiceTP” operation=”findAFlight” .../>
22 <sequence name=”stopTimer Sequence”>

23 <assign>
24 <copy>
25 <from expression=”’invokeBerlinAirTP’”/>
26 <to variable =”stopTimerRequest” part=”activityName”/>
27 </copy>
28 </assign>
29 <invoke partnerLink=”AuditingWS” portType=”AuditingPT”
30 operation=”stopTimer” inputVariable =”stopTimerRequest”/>
31 </sequence>
32 <invoke name=”invokeHotelServiceTP” operation=”findARoom” .../>
33 ...
34 <reply name=”reply” partnerLink=”client” .../>
35 </sequence>
36 </process>

Listing 3.4: Execution time measurement in the travel package process

35

1 <process name=”flightProcess” .../>
2 ...
3 <partnerLink name=”AuditingWS” partnerLinkType=”AuditingPLT” .../>

4 ...
5 <variable name=”startTimerRequest” messageType=”startTimerInput”/>
6 <variable name=”stopTimerRequest” messageType=”stopTimerInput”/>
7 ...
8 <sequence name=”flightSequence”>
9 <receive name=”receiveClientRequest” .../>

10 <assign>...</assign>
11 <sequence name=”startTimer Sequence”>

12 <assign>
13 <copy>
14 <from expression=”’invokeBerlinAirFP’”/>
15 <to variable =”startTimerRequest” part=”activityName”/>
16 </copy>
17 </assign>
18 <invoke partnerLink=”AuditingWS” portType=”AuditingPT”
19 operation=”startTimer” inputVariable =”startTimerRequest”/>
20 </sequence>
21 <invoke name=”invokeFlightServiceFP” operation=”findAFlight” .../>
22 <sequence name=”stopTimer Sequence”>

23 <assign>
24 <copy>
25 <from expression=”’invokeBerlinAirFP’”/>
26 <to variable =”stopTimerRequest” part=”activityName”/>
27 </copy>
28 </assign>
29 <invoke partnerLink=”AuditingWS” portType=”AuditingPT”
30 operation=”stopTimer” inputVariable =”stopTimerRequest”/>
31 </sequence>
32 <invoke name=”invokeTunisair” operation=”searchFlight” .../>
33 ...
34 <reply name=”reply” partnerLink=”client” .../>
35 </sequence>
36 </process>

Listing 3.5: Execution time measurement in the flight process

36

because they require knowledge about the workflow execution state and the ap-
plication semantics, which is unavailable in the underlying layers. That is, to
support such requirements, programmers have to add security activities to the
workflow process.

For example, it might be necessary to ensure the integrity and confidentiality
of application data at the workflow level if this feature is not provided by the
underlying layers. In the booking process, the travel agency interacts with the
credit card company to handle payments. This process contains activities for
checking the card data and for charging the card. Assume that these activities
are implemented by some applications that are called via CORBA. Then, the
credit card company replaces that application by a Web Service that uses WS-
Security [136]. If the workflow management system hosting the booking process
does not support secure Web Service calls it becomes necessary to add activities
to the booking process for securing the credit card data before, and also after the
activities for checking the credit card data and for charging the card, because
the response of the credit card Web Service may be secured.

flight process

 receive
flight request

 Flight search
Berlin Air

send flight
offers

 Flight search
Tunis Air

 Make
 Offer

receive
package request

 Flight search
Berlin Air

send package
offers

 Hotel search
MyHotels

 Make
 Offer

package process

 workflow- level
 security

 security

 security

 security

 security

Figure 3.5: Workflow-level security

Another well-known example of workflow-level security requirements is that
authorized subjects (e.g., human workflow users) should gain access to the re-
quired data only during the activity execution (and not before or after its execu-
tion). For example, the workflow participant who sends the flight offers should
have access to the data of the offers only during the execution of the activity
send flight offers and not during the execution of the activity make offer.

To enforce this workflow-level requirement, the security component of the
workflow management system should authorize the subjects in synchronization
with the workflow execution. Several workflow management systems lack mech-
anisms for such temporal authorization [185]. To support this authorization
model in those systems, the workflow designer has to add appropriate activ-
ities, which notify the authorization system before and after the execution of
some process activities as illustrated in Figure 3.5.

Application-level security requirements are application specific, e.g., an em-
ployee preparing a travel reimbursement claim cannot be the same as the one

37

who issues the reimbursement check [185]. Another example of application-level
security in the context of the travel agency is that the participant performing
the activity make offer is not allowed to modify the price calculation rules un-
less she is a manager. To enforce application-specific security requirements, the
workflow designer has to add appropriate activities to the workflow process.

Some commercial workflow management systems can be used with add-on
tools that provide advanced security support. For example, the WebSphere MQ
Extended Security Edition is an add-on to the IBM MQ Workflow [102] that
supports workflow data protection by signing and/or encrypting messages. With
that tool, security activities are added to the workflow process without showing
up in the workflow schema. However, even with that tool, workflow-level and
application-level security requirements can only be supported by adding security
activities explicitly to the workflow process. In fact, there are always cases where
adding security activities to the workflow process is required.

Workflow-level security and application-level security are crosscutting con-
cerns. As shown in Figure 3.5, the activities corresponding to these concerns are
scattered across the flight process and the travel package process, and the result-
ing workflow processes are tangled. These security concerns will not be shown
in BPEL code because BPEL does not support human participants. There is
however, a recent proposal for such an extension [106].

3.3.2 The need for crosscutting mechanisms

Current workflow languages including BPEL do not provide mechanisms for
crosscutting modularity. This leads to scattered and tangled workflow schemes:
the implementation of a single concern appears in several workflow schemes,
and a single workflow schema addresses several concerns. The scattering and
tangling span the different workflow perspectives and are not only restricted to
activities. They lead to complex and monolithic workflow schemes.

In particular, the implementation of a single concern cannot be changed
unless entire workflow schemes are changed in an invasive way. The modification
of a crosscutting concern affects in general several locations in different workflow
processes, because of the crosscutting structure of such concerns. Consequently,
the workflow programmer has to find all locations that are affected by the
crosscutting concern and modify them consistently, which is a cumbersome and
error-prone undertaking.

Given constructs for modularizing crosscutting concerns, workflow program-
mers would be in a better position to make design decisions as to what to
consider as core composition logic and which crosscutting concerns to separate
in well-defined modules. A number of criteria could drive these design decisions:
the extent of the crosscutting nature of features, the expected requirements for
maintainability and change, etc [121].

The separation of a concern makes it possible to modify the code pertaining
to it without changing all the composition (independent extensibility) and also
to reuse that code in other compositions. In addition, with appropriate compo-
sition techniques, modifications of a separated concern can be done dynamically.

The message of this section is not that the crosscutting concerns mentioned
above should be separated in any case, but rather that their crosscutting nature
motivates the need for new modularization mechanisms in workflow languages.
Whether, when, and how to use these mechanisms is a matter of design decisions

38

and proper methodology. But designers should be enabled to capture some
concerns in a modularized way if they decide to do so.

One may argue that concerns such as the measurement of activity execution
time and security could be addressed in a middleware layer below BPEL. How-
ever, if the concern at hand is inherently related to BPEL constructs, it cannot
be supported in underlying middleware.

For the measurement of activity execution time, if one considers only invoke
activities, the response time of a Web Service can be monitored in the SOAP
engine. However, if one wants to measure the execution time of a non-messaging
activity (e.g., a flow), then this information is not accessible to underlying
middleware.

Similar arguments apply to workflow-level and application-level security.
SOAP message security can be implemented in a middleware layer below BPEL,
i.e., incoming and outgoing SOAP messages can be verified/modified in the
messaging infrastructure. However, at the SOAP level, relevant information for
workflow-level and application-level security (such as the workflow schema, the
current execution state, and the assignment of users to activities) is not avail-
able. This makes it impossible to support workflow-level security (such as the
temporal authorization in sync with activity execution) and application-level
security in middleware layers. More details on workflow-level security in BPEL
will be given in chapter 6.

In the vein of the seminal papers on the end-to-end argument in system
design [163] and on open implementations [86], the decision as to what concerns
to capture within the middleware and which ones to capture at the application
level is a matter of design considerations. There are always concerns that make
more sense to be captured at the application end. For instance, this is why the
Enterprise Java Beans component model provides means to express application-
level access control within bean implementations, in addition to the security
mechanisms provided by any EJB application server.

It is important to give the workflow designers the means to capture crosscut-
ting concerns at the application level in a well-modularized way. The implemen-
tation of the middleware can also profit from such crosscutting modularization
mechanisms [41, 72, 73, 152, 201].

3.4 Change Modularity

In this section, the issues of change modularity in workflow management sys-
tems are addressed. After classifying workflow changes, the need for change in
workflow management is motivated. Then, some change scenarios are presented
in the context of the travel agency example. After that, the modularity of work-
flow changes is studied in static workflow management systems such as current
BPEL implementations, and adaptive workflow management systems such as
ADEPT [157, 158] and WASA [193, 194]. Finally, a discussion will show the
necessity and the benefits of a change module concept in workflow management.

39

Change classification

In the workflow literature [31, 94, 182], workflow changes are classified into
evolutionary or static changes and ad-hoc or dynamic changes.

• evolutionary changes: They result from business process re-engineering
efforts, new business strategies and collaborations (e.g., acquisition and
mergers), new external conditions (e.g., laws and regulations), technical
advances, and organizational changes (e.g., new employees, new hierarchy
structures). They can be supported by modifying the workflow schema
and redeploying the respective workflow process. Evolutionary workflow
changes affect the workflow schema, i.e., all workflow instances that are
created after an evolutionary change use the modified workflow schema.

• ad-hoc changes: They are caused by external events as a result of user
involvement (e.g., wrong or incomplete user input), unpredictable events,
and erroneous situations (e.g., network failures and mismatches between
the real process and the workflow process). As it is impossible to think of
all these exceptional situations in advance, workflow management systems
should provide support for the dynamic adaptation of running workflow
instances. Ad-hoc changes affect individual workflow instances and require
ad-hoc deviation of the predefined workflow schema at runtime.

In addition, workflow changes can be classified depending on the workflow
perspectives that they affect [94]. That is, there are process-level changes (the
functional and behavioral perspectives), organization-level changes (the orga-
nizational perspective), data-level changes (the informational perspective), and
infrastructure-level changes (the operational perspectives). In general, the ef-
fects of a workflow change span more than one perspective.

The need for dynamic workflow changes

With the increasing competition worldwide, the open markets, and the use of
distributed computing technologies, the environment of today’s organizations
has become highly dynamic. In addition, some recent workflow applications
such as cross-organizational workflows [156], scientific workflows [131], and clin-
ical workflows [157] are characterized by high flexibility requirements. In such
applications, it is unlikely that the workflow processes can be specified once and
executed without any change.

When unpredictable events and errors occur, dynamic workflow changes are
needed. In such situations, it is not always feasible to stop running workflow
instances, especially in the case of long-running processes, which may take sev-
eral days or weeks for their execution. If one stops a long-running process, one
must roll back or compensate all previously performed activities.

For example, the booking workflow process of the travel agency scenario
is a long-running process. This process checks the credit card number of the
customer and then charges the credit card if it is valid. After that, the book-
ing process issues the necessary travel documents (e.g., flight tickets and hotel
vouchers) and sends them using a shipping service. If the booking process is
stopped, just before issuing the flight ticket and/or hotel voucher, to accommo-
date a given change, the resulting state would be inconsistent because the credit
card was charged and the flight ticket and the hotel voucher are not issued.

40

In the context of BPEL workflows, the need for dynamic adaptation is even
stronger than in traditional workflows for the following reasons:

• Partner Web Services are provided by external organizations, which are
out of the control of the organization that hosts the BPEL process.

• Web Services generally use the unreliable Internet as communication med-
ium, which may lead to more frequent violations of Service Level Agree-
ments (SLA) by the partners. If a partner Web Service performs badly,
the BPEL process will also perform badly. In such a case, the organization
that hosts the workflow process would probably prefer to make the already
running workflow instances use an alternative partner Web Service rather
than violate its own SLAs.

• As the Web Service technologies are still maturing (new specifications,
standardization, etc.), updates of partner Web Services tend to be fre-
quent, e.g., to support new versions of WS-Security, WS-Reliability, etc.
In such cases, the composition has to be adapted appropriately.

• Although interoperability is not a problem in theory, the Web Services
provided by different software vendors are not always interoperable [199],
because of different interpretations of the specifications, support of dif-
ferent versions of some specification, use of proprietary extensions, etc.
Consequently, it may be necessary to replace a partner of the composition
by another fully interoperable partner.

• As Web Services are published on the Web, they will allow companies to
reach a large number of customers, which should be treated in a differen-
tiated way. This means that these Web Services, which are implemented
by BPEL workflows, require to be customized and adapted to the needs
of different clients. Expressing each possible customization in the BPEL
process using switch activities is quite complex and may be impossible
and/or undesirable.

3.4.1 Change scenarios

In the following, two examples of workflow changes will be presented in the
context of the travel agency scenario. The first one is an evolutionary change
and the second is an ad-hoc change.

Adding car rental logic As a result of a new partnership with a car rental
company, the travel agency needs to extend the travel package process with
some business logic to search for a rental car. In this way, when a customer
requests a travel package, she also gets car propositions. This change is an
example of evolutionary workflow changes.

It is possible to have variations of this change, so that the car offer is made
only to frequent customers, or to the ones who have expressed interest in such
offers in their profiles. Another variation could restrict this change to specific
destinations, where the car company has subsidiaries. In these two variations,
the adaptation should apply to specific workflow instances.

Figure 3.6 shows how the travel package process should be modified. The
left hand side of this figure shows the original process. The right hand side

41

shows the new process. The change functionality is implemented by two new
activities: an activity car search that interacts with the car rental company to
find available cars and an activity update offer that extends the offers that will
be returned to the client with the car proposition.

send package
offers

 Make
 Offer

send package
offers

 Hotel search
MyHotels

 Make
 Offer

receive
package request

 Flight search
Berlin Air

 Car search

 Update
 Offer

 Hotel search
MyHotels

receive
package request

 Flight search
Berlin Air

Figure 3.6: Adding car rental logic to the travel package process

Replacement of a bad performing partner The workflow engine that
hosts the workflow processes of the travel agency provides some monitoring
tools, which can be configured so that an administrator is notified when some
activity instance or a process instance runs for a longer time period than a
predefined threshold value.

The administrator can test whether the partner Web Services for flight search
(i.e., Berlin Air) and hotel search (i.e., MyHotels) are reachable. Assume fur-
ther that Berlin Air Web Service is temporarily unavailable because of security
updates for instance.

If the problem of partner unavailability is not addressed appropriately, sev-
eral instances of the travel package process and the flight process will raise a
fault. This would result in an unacceptable image loss for the travel agency in
front of its customers. To fix this situation, the administrator needs appropriate
means to dynamically adapt the running instances of the travel package process.
Thereby, two possible ad-hoc changes are conceivable.

In the case of workflow processes aggregating similar services from different
providers, such as the flight process, the activity that causes the fault should
be skipped. That is, the flight process could temporarily use the Web Service
of the other partner airline (i.e., Tunis Air).

In the case of workflow processes aggregating different types of services, such
as the travel package process, it is necessary to use an alternative partner, which
provides the same service as the unavailable one.

In both cases, the change should be applied dynamically in order to fix the
already started instances of the travel package process. Such dynamic adapta-

42

tion is also required for the long-running booking process because the booking
operation of Berlin Air Web Service is also temporarily unavailable.

3.4.2 Expressing changes in static workflow management

To study the modularity of change expression in static workflow management
BPEL is taken as an example. BPEL and current implementations thereof do
not support dynamic changes. The only flexibility feature in BPEL is dynamic
partner binding, in which a special variant of the assign activity is used to map
partners to specific Web Services at runtime. Dynamic adaptations such as
adding a new partner, adding an activity, modifying the control flow, adding a
new variable, and modifying the data flow are not supported.

1 <process name=”travelPackage” .../>
2 ...
3 <partnerLink name=”CarCompany” partnerLinkType=”CarPLT” .../>

4 ...
5 <variable name=”carRequest” messageType=”getCarInput”/>
6 <variable name=”carResponse” messageType=”getCarOutput”/>
7 ...
8 <sequence name=”packageSequence”>
9 <receive name=”receiveClientRequest” .../>

10 ...
11 <invoke name=”invokeFlightServiceTP” operation=”findAFlight” .../>
12 <invoke name=”invokeHotelServiceTP” operation=”findARoom” .../>
13 ...
14 <sequence>

15 <assign>
16 <copy>
17 <from variable=”clientrequest” part=”deptDate”/>
18 <to variable =”carRequest” part=”startDate”/>
19 </copy>
20 ...
21 </assign>
22 <invoke partnerLink=”CarCompany” portType=”CarPT” operation=”getCar”
23 inputVariable =”carRequest” ouputVariable=”carResponse”/>
24 <assign>
25 <copy>
26 <from variable=”carResponse” part=”carInfo”/>
27 <to variable =”clientresponse” part=”optionalinfo”/>
28 </copy>
29 </assign>
30 </sequence>
31 <reply name=”replyToClient” partnerLink=”client”
32 </sequence>
33 </process>

Listing 3.6: Adding car rental logic to the travel package process

Adding car rental logic To add car rental logic to the travel package process,
the programmer has to undeploy this process and edit the respective workflow
schema. Then, she has to redeploy the modified workflow schema. Listing 3.6

43

shows the necessary changes to the travel package process for adding car rental
functionality.

Listing 3.6 shows that new workflow constructs are needed to integrate this
workflow change in the travel package process. These constructs include a new
partner link to the car rental Web Service (line 3) and two new variables for
holding the input and output data of the car search activity (lines 5–6). To
implement the change logic, three activities are needed: an assign (lines 15–21)
sets the input data of the car search activity, an invoke (lines 22–23) implements
the car search activity, and another assign activity (lines 24–29) copies the
output data of the car search activity into the process response variable.

Replacement of a bad performing partner Replacing the bad performing
partner Web Service by an alternative one that has a different interface cannot
be done dynamically because BPEL and current implementations thereof do not
support dynamic changes.

If Tunis Air Web Service and Berlin Air Web Service implement the same
WSDL port type, one could use the special variant of the assign activity in
a fault handler for instance to copy the endpoint reference of Tunis Air Web
Service to the flight partner of the travel package process. However, Figure
3.2 shows that the interfaces of these airline Web Services are different as they
provide operations that have different names. Consequently, the assignment of
endpoint reference will not work in this case.

The replacement of Berlin Air Web Service by Tunis Air Web Service can
only be done statically by undeploying the travel package process, editing the
respective workflow schema, and redeploying it.

Listing 3.7 shows how the travel package process is modified to support this
change. To keep the changes to the workflow schema minimal, the partner link
and the variables corresponding to the interactions with Berlin Air Web Service
are not removed, because they may be used by other activities of the travel
package process (lines 41 and 49). Otherwise, the workflow schema of the travel
package process would have to be changed in an even more invasive manner.

In Listing 3.7, the programmer adds a new partner link to the Tunis Air
Web Service (line 4) and two new variables for the input and output of the new
flight search activity (lines 10–11). Moreover, she replaces the faulty invoke
activity that calls Berlin Air Web Service by a new invoke activity that calls
Tunis Air Web Service (lines 24–26). The programmer uses two new assign
activities: one activity (lines 17–23) to copy the flight request data from the
variable flightrequest to the input variable Newflightrequest of the new invoke
activity invokeTunisAirTP, and another assign activity (lines 29–38) to copy the
output data of the new invoke activity into the variable flightresponse, which is
used later in the travel package process (lines 41 and 49). The second assign is
an example of activities for fixing the data flow.

The two change examples show that BPEL lacks a module construct, which
encapsulates the workflow constructs that implement a given workflow change.
Each change is directly integrated in the workflow schema and it is buried in the
process code, i.e., it does not exist as a first-class entity. The change can only
be understood implicitly by comparing the original workflow schema before the
change with the workflow schema after the change. Consequently, understand-
ing, tracing, and managing workflow changes becomes difficult.

44

1 <process name=”travelPackage”>
2 <partnerLinks>
3 <partnerLink name=”flight” partnerLinkType=”flightPLT” .../>
4 <partnerLink name=”Newflight” partnerLinkType=”TunisairPLT” .../>

5 ...
6 </partnerLinks>
7 <variables>
8 <variable name=”flightrequest” messageType=”findAFlightRequest”/>
9 <variable name=”flightresponse” messageType=”findAFlightResponse”/>

10 <variable name=”Newflightrequest” messageType=”searchFlightRequest”/>
11 <variable name=”Newflightresponse” messageType=”searchFlightResponse”/>
12 ...
13 </variables>
14 <sequence name=”packageSequence”>
15 <receive name=”receiveClientRequest” partnerLink=”client” .../>
16 ...
17 <assign>

18 ...
19 <copy>
20 <from variable=”flightRequest” part=”retDate”>
21 <to variable =”NewflightRequest” part=”returnDate”>
22 </copy>
23 </assign>
24 <invoke name=”invokeTunisAirTP”
25 partnerLink=”newflight” portType=”TunisAirPT” operation=”searchFlight”
26 inputVariable =”Newflightrequest” outputVariable=”Newflightresponse”/>
27 <invoke name=”invokeHotelServiceTP” partnerLink=”hotel” .../>
28 ...
29 <assign>

30 <copy>
31 <from variable=”Newflightresponse” part=”flightData”/>
32 <to variable =”flightresponse” part=” flightDetails ”/>
33 </copy>
34 <copy>
35 <from variable=”Newflightresponse” part=”flightNumber”/>
36 <to variable =”flightresponse” part=”flightnum”/>
37 </copy>
38 </assign>
39 <assign>
40 <copy>
41 <from variable=”flightresponse” part=” flightDetails ”/>
42 <to variable =”clientresponse” part=” flightInfo ”/>
43 </copy>
44 <copy>
45 <from variable=”hotelresponse” part=”roomDetails”/>
46 <to variable =”clientresponse” part=”hotelInfo”/>
47 </copy>
48 <copy>
49 <from expression=”concat(getVariableData(’ flightresponse ’,’ flightnum ’),
50 getVariableData (’ hotelresponse ’,’ id’))”/>
51 <to variable =”clientresponse” part=”offerid”/>
52 </copy>
53 </assign>
54 <reply name=”replyToClient” partnerLink=”client” portType=”travelServicePT”
55 operation=”getTravelPackage” variable=”clientresponse” />
56 </sequence>
57 </process>

Listing 3.7: Replacing a bad performing partner Web Service

45

Workflow changes can also be crosscutting, i.e., they can span several work-
flow processes. For example, one could extend both the travel package process
and the flight process with logic for car search. Moreover, one could replace
the bad performing partner in both processes. The need for modular change
expression is even stronger in the case of crosscutting workflow changes.

3.4.3 Expressing changes in adaptive workflow management

Although flexibility and adaptability are among the main objectives of the work-
flow technology, most workflow management systems lack support for dynamic
change [1, 17, 75]. In order to improve the flexibility of workflows, several re-
search efforts in the area of adaptive workflow [28, 93, 157, 182, 193] tried to
make workflow management more flexible and adaptable by proposing appro-
priate models and techniques to support dynamic change.

To study the modularity of change expression in adaptive workflow man-
agement, two well-known workflow management systems will be considered:
WASA [193] and ADEPT [157]. Both systems provide a set of dynamic change
operations, e.g., for adding or deleting activities and edges to/from the activity
graph.

In WASA, a special workflow modeling activity can be used to perform
change operations. This activity provides an operation for adding a new activity
as a child of another. This activity takes as input an activity and two sets of
predecessor activity nodes (i.e., the activities that must complete before the new
activity starts) and successor activity nodes (i.e., the activities that can only
start after the new activity completes).

In ADEPT, a special Java API for dynamic workflow modification is pro-
vided. The API method for inserting a new activity into the workflow graph
takes similar parameters to those of the WASA operation mentioned above.
ADEPT goes a step further than WASA by allowing the specification of a map-
ping of existing workflow data to the input parameters of the new activity.

Adding car rental logic Assume that the travel package process is imple-
mented using the workflow languages of ADEPT or WASA. To add car rental
logic to the travel package process using the approach taken in those manage-
ment systems, one would have to call the following change operations:

• insert the new participant representing the car rental company

• insert two new variables for the input and output data of the car search
activity

• insert a data manipulation activity, which sets the input data of the car
search activity

• insert the car search activity

• insert a data manipulation activity, which copies the output data of the
car search activity into the process variable, which contains the travel
package offers that will be returned to the client

Moreover, the parameters of each activity adding operation should be set
correctly to insert the new activities at the right place in the workflow process.

46

Replacement of a bad performing partner The necessary change opera-
tions to replace the bad performing partner service by another service using the
approach provided by ADEPT or WASA are listed in the following:

• insert the new participant representing Tunis Air

• insert two new variables for the input and output data of the new flight
search activity

• insert the flight search activity that interacts with Tunis Air

• insert a data manipulation activity, which sets the input data of the new
flight search activity

• delete the flight search activity that interacts with Berlin Air

• insert a data manipulation activity, which copies the output data of the
new flight search activity into the process variable, which contains the
offers that will be returned to the client

• insert one or more activities that fix the data flow, i.e., ensure that the
process activities that use variables, which should be set by the deleted
flight search activity, will still work correctly

3.4.4 The need for change modules

Static workflow management systems such as current BPEL implementations
lack mechanisms to express workflow changes in a modular way as first-class
entities. Consequently, one can only understand the change implicitly by com-
paring the original workflow process (e.g., the travel package process shown in
Listing 3.1) with the modified one (e.g., the travel package process shown in
Listing 3.6), and deriving the change out of this comparison.

In adaptive workflow management systems such as ADEPT and WASA,
workflow changes cannot be expressed modularly as first-class entities. They
can only be understood by tracing the low-level change operations that were
called to integrate them, or by comparing a source workflow schema with a
modified one. That is, one has to trace all calls to the change operations to see
which operations were called to add new activities and/or control edges, which
operations were called to delete existing activities and/or control edges, which
operations were called to assign variables to the new activities, which operations
were called to assign participants to the new activities, etc.

Workflow management systems lack a module concept for modularizing the
decision about where and when a workflow change should be applied in addi-
tion to the workflow constructs implementing that change. These constructs
include the activities (the functional perspective), the variables (informational
perspective), the participants (organizational perspective), and the applications
(operational perspective) that implement a workflow change.

As already mentioned, some workflow changes can be crosscutting. In that
case, the need for a more modular change expression is even stronger because
crosscutting changes are problematic like crosscutting concerns. Without a
change module, crosscutting changes would not only be buried in the process

47

code, but also scattered across and tangled in the specifications of several work-
flow processes.

The availability of a module concept for workflow changes would allow adap-
tive workflow management systems to support workflow changes at a higher
abstraction level than with low-level change operations. Moreover, it allows
workflow changes to be supported as first-class entities like workflow processes.
This would allow workflow changes to be switched on and off flexibly. In addi-
tion, a better modularization of workflow changes would alleviate the problems
of change management, e.g., undoing temporary changes can be handled more
easily.

In fact, a common solution for undoing temporary changes in adaptive work-
flow engines [157] consists in using a change history. This solution has been
implemented in ADEPT, in which the different versions of a workflow schema
are stored together with the changes that lead from one version to another.
If there is a module concept for workflow changes, undoing changes becomes
much easier. Rather than migrating workflow instances from a source schema
to a destination schema as in [30, 157, 193], all what is needed to undo a workflow
change is to deactivate the respective change module, i.e., separate at runtime
the change module and the workflow process module.

3.5 Conclusion

This chapter identified two limitations in current workflow languages, which
lack language constructs for capturing crosscutting concerns and for expressing
workflow changes in a modular way. That is, the workflow constructs that
belong to a crosscutting concern cannot be encapsulated in a separate module.
Moreover, workflow changes cannot be expressed as modular first-class entities

The problems resulting from these limitations were illustrated using a travel
agency scenario. In that scenario, the implementation of crosscutting concerns
such as data collection for billing and execution time measurement was studied.
Moreover, some workflow change examples were presented such as adding car
rental logic and replacing a bad performing partner.

Workflow graphs and BPEL were used to illustrate the problems that arise
as a result of lacking means for crosscutting concern modularization and change
modularization. Workflow graphs illustrated the problems of scattering and
tangling in a visual and language-independent manner. BPEL code illustrated
these problems and their effects on the different workflow perspectives using a
specific XML-based workflow language.

Moreover, this chapter motivated the need for language constructs that en-
capsulate crosscutting concerns and support a modular expression of workflow
changes. It also explained how such constructs would improve the modularity
of workflow schemes and increase the flexibility of workflow processes.

48

Part II

Solution: Aspect-Oriented Workflow
Languages and AO4BPEL

49

CHAPTER 4

Aspect-Oriented Workflow Languages

4.1 Introduction

This chapter1 presents a solution for the problems of crosscutting concern mod-
ularity and change modularity in current workflow languages.

In fact, the problems that were presented in Chapter 3 are due to the lack
of appropriate decomposition mechanisms and language constructs for captur-
ing concerns that cut across process boundaries and for modularizing workflow
changes. To solve these problems, this chapter proposes a concern-based decom-
position approach, according to the principle of separation of concerns. That is,
it allows the workflow code of a given concern to be encapsulated in a separate
module. At the level of workflow language, new constructs are introduced to
support this decomposition approach.

In the context of programming languages, the problems of crosscutting con-
cern modularity were solved by Aspect-Oriented Programming [119]. This
paradigm explicitly addresses the modularity of crosscutting concerns by in-
troducing new programmatic constructs such as aspects, pointcuts, and advice.
In many works, aspects have been used to modularize the code of various cross-
cutting concerns such as logging and profiling [122], resource management [122],
persistence [155], security [23, 197], transactions [53, 78], and business rules [67].

So far, aspect-orientation has been mostly used in the context of program-
ming languages. However, aspect-orientation is a general-purpose decomposi-
tion and modularization paradigm, which can also be applied in other contexts.
In this chapter, concepts from Aspect-Oriented Software Development [54] will
be introduced to the domains of workflow modeling and workflow specification
to solve the modularity problems that were presented in Chapter 3.

Aspect-oriented workflow languages provide language constructs for cross-
cutting concern modularity such as aspect, pointcut, and advice. These lan-
guages support a concern-based decomposition of workflow specifications: The

1Parts of this chapter were published in the paper Aspect-Oriented Workflow Languages,
CoopIS 2006 [38].

50

business logic, as being the main concern, can be specified in a modular way
within a workflow process module, whereas crosscutting concerns and workflow
changes can be specified in a modular way within workflow aspect modules.

To present the concepts of aspect-oriented workflow languages visually and
independently of any specific language, an aspect-oriented graph-based language
will be used in this chapter. In the next chapter, a concrete aspect-oriented
workflow language for Web Service composition will be presented as proof-of-
concept. That is, this chapter focuses on aspect-oriented workflow modeling and
introduces the general concepts of aspect-oriented workflow languages, whereas
the next chapter presents a concrete aspect-oriented workflow language together
with a compliant aspect-aware workflow engine.

In addition, this chapter will elaborate on the requirements of aspect-oriented
workflow languages with respect to join point model and pointcut language,
advice language, and composition mechanisms of aspects and processes. These
concepts are different from their counterparts in aspect-oriented programming
languages because workflow languages, which describe processes, are different
from programming languages, which describe computations.

The remainder of this chapter is organized as follows. In Section 4.2, the
concern-based decomposition of workflow schemes is proposed as a solution for
the problems of crosscutting concern modularity and change modularity in cur-
rent workflow languages. Section 4.3 introduces an aspect-oriented workflow
language that shows the concepts of workflow aspects graphically. Section 4.4
elaborates in more detail on the requirements and concepts of aspect-oriented
workflow languages. Section 4.5 surveys some related work and Section 4.6
concludes this chapter.

4.2 Concern-based Decomposition

A workflow schema consists of several constructs that correspond to the differ-
ent workflow perspectives [170] (cf. Chapter 2). In addition to activities (the
functional perspective), a workflow schema contains constructs that specify the
execution order and the control flow dependencies between activities (the be-
havioral perspective), variable declarations and a specification of the data flow
between activities (informational perspective), declarations of participants that
perform the activities (the organizational perspective), and declarations of the
applications (the operational perspective) that support their execution.

So far, workflow languages support a process-based decomposition of work-
flow schemes. In addition, some languages support a hierarchical decomposition,
i.e., the implementation of an activity can be specified by another workflow pro-
cess (sub-process). In both decomposition mechanisms, the parts of the work-
flow schema that correspond to different workflow perspectives are generally not
separated.

To improve the modularity of workflow schemes, MOBILE [111] introduces a
perspective-based decomposition by expressing the parts of the workflow schema
that correspond to the different workflow perspectives separately. In this way,
if one needs, e.g., to modify the execution order of two activities, only the part
of the schema corresponding to the behavioral perspective has to be changed.

However, the three decomposition mechanisms that were mentioned so far
do not appropriately support the modularization of the workflow process code

51

of crosscutting concerns. Even with the perspective-based decomposition, the
problems of scattering and tangling arise.

For example, if the data collection for billing concern should be integrated
with workflow processes that are specified using MOBILE, the respective work-
flow constructs would be still scattered across the different workflow schemes.
Moreover, the tangling problem remains because the necessary activities for data
collection for billing would be intertwined with those belonging to the business
logic concern, the necessary variables for data collection for billing would be
intertwined with those belonging to the business logic concern, and so on.

To solve the problems of scattering and tangling, a concern-based decom-
position approach is proposed. In this approach, the workflow constructs that
implement a given concern are encapsulated in a separate module.

Two types of modules are provided in this concern-based decomposition. A
process module is used for encapsulating the core business logic of the workflow
process, which is the main concern. For crosscutting concerns and workflow
changes, another type of modules is required, because it is necessary to specify
when and where the execution of the respective activities should be triggered
during the execution of the workflow process.

Like in Aspect-Oriented Programming [119], this PhD work proposes using
aspects as modules for crosscutting concerns in workflow specifications. More-
over, aspects will also be used as change modules.

Workflow languages that support process modules and aspect modules are
called aspect-oriented workflow languages. These languages incorporate the
concern-based decomposition and break with the tyranny of the dominant de-
composition [175], which is the process-based decomposition in the case of work-
flow languages.

Figure 4.1 illustrates the concept of concern-based decomposition using the
travel package process and the flight process of the travel agency scenario.

The left hand side of this figure shows the workflow specification in current
workflow languages and illustrates the problems of scattering and tangling and
how they span the different workflow perspectives.

The right hand side of this figure shows how workflow specification is done in
aspect-oriented workflow languages using aspect modules and process modules.
The code of the business logic concern is encapsulated in the process module
and the code of each of the concerns data collection for billing and execution
time monitoring is encapsulated in an aspect module.

This figure also shows that the workflow specifications of the flight process
and the travel package process become simpler and more modular when work-
flow aspects are used. These specifications are no longer tangled. Moreover,
the workflow code of the crosscutting concerns data collection for billing and
execution time monitoring is no longer scattered across the workflow schemes
of the two workflow processes.

As shown in Figure 4.1, workflow aspects can also be used to express work-
flow changes as separate first-class entities and to modularize the necessary
workflow constructs for their implementation.

52

Flight process
workflow schema

transitions

transitions
 business logic

Flight process

billing
(Aspect)

 billing
activities

data

participants

applications

 billing

 billing

 billing

 billing

activities

transitions

data

participants

applications

 monitoring

 monitoring

 monitoring

 monitoring

 monitoring

monitoring
(Aspect)

activities

transitions

data

participants

applications
 change

 change

 change

 change

 change

change
(Aspect)

pointcuts
activities

data

participants

applications

Package process

transitions

activities

 monitoring billing
data

participants

applications

Package process
workflow schema

pointcutspointcuts

transitions

 advice advice advice

activities
 business logic

data
 business logic

participants
 business logic

applications
 business logic

transitions
 business logic

activities
 business logic

data
 business logic

participants
 business logic

applications
 business logic

 business logic business logic

 monitoring billing

 business logic

 monitoring billing

 business logic

 monitoring billing

 business logic

 monitoring billing

 business logic

 monitoring billing

 business logic

 monitoring billing

 business logic

 monitoring billing

 business logic

 monitoring billing

 business logic

 monitoring billing

 business logic

Figure 4.1: Concern-based decomposition of workflow specifications

4.3 Aspectual Workflow Graphs

Aspectual workflow graphs are a visual means to illustrate the concepts of
aspect-oriented workflow languages graphically (i.e., in a form that can be un-
derstood even by non-programmers) and independently of any specific language.
Aspectual workflow graphs extend the graph-based workflow language that was
presented in Chapter 2 with aspect-oriented constructs.

4.3.1 Join points, pointcuts, advice

In aspectual workflow graphs, join points are points in the execution of the
workflow process corresponding to the execution of activity nodes. A workflow
aspect is a set of one or more pointcuts and advice.

The pointcut is a construct for selecting join points. A pointcut is represented
graphically by an oval, which is connected by dashed lines to the activity nodes
that it selects. A pointcut selects the points in the execution corresponding
to the execution of the graphically selected activities. The pointcut can select
activities that are defined in different workflow processes, e.g., the pointcut of
the aspect shown in Figure 4.2 selects the flight search activity nodes in the
flight process and in the travel package process. This feature, which is called
quantification [81], is very important for capturing crosscutting concerns.

The advice consists of an activity that implements the functionality of a
crosscutting concern or a workflow change. Moreover, the advice defines the
execution order of that activity with respect to the join point. In addition to
the advice types before, after, and around, which are known from AspectJ [118],
other execution orders are possible according to the variety of workflow control
patterns [183] (cf. Chapter 2).

53

The advice is represented graphically by a rectangle with rounded corners.
The association of advice and pointcut is represented graphically by connecting
the advice and the pointcut with a line. The effect of the advice is to replace
any join point node captured by the pointcut, by another activity node that
may contain the join point node. The advice shown in Figure 4.2 consists of an
activity for incrementing a counter. This activity is executed after the selected
join points, which are referred to in the advice with the special activity proceed.

4.3.2 Composition

To integrate workflow aspects with workflow graphs, an aspect/process compo-
sition mechanism is required. In aspectual workflow graphs, the composition of
aspects and processes can be conceptually considered as a transformation of the
workflow graph, which works as follows.

Each activity node that is matched by a pointcut is replaced by a new
composite activity node, which encloses the advice node and may also contain
the join point activity node. If the join point activity node is source or target of
control flow edges, the composite activity becomes the source or target of those
edges. The advice is a self-contained activity, i.e., no transitions are allowed
between the advice activity and the other activities of the workflow graphs
except the join point activity.

The transitions inside the new composite activity depend on the execution
order of the advice and the join point activity. When the advice should be
executed before the selected join point, the composite activity has a transition
from the advice activity to the join point activity. When the advice should
execute after the selected join point, a transition goes from the join point activity
to the advice activity. In the around advice, the execution of the join point
activity can be skipped or can be integrated in the middle of other activities by
using the special activity node proceed. This node is a place holder for the join
point activity node.

4.3.3 Examples

In the following, aspectual workflow graphs are used to illustrate how workflow
aspects allow the modularization of the crosscutting concerns and the workflow
changes that were presented in Chapter 3.

Data collection for billing

The left hand side of Figure 4.2 shows the workflow graphs of the flight process
and the travel package process. In addition, it shows a workflow aspect, which
modularizes the data collection for billing concern in these processes.

The pointcut of this aspect selects the flight search activities in both pro-
cesses. The advice of this aspect contains an activity for incrementing a counter.
This activity is executed after the join point, which is referred to by the proceed
activity. This advice executes after the join point activity (after advice).

The logical effect of composing this aspect with the workflow graphs of the
travel package process and the flight process is shown on the right hand side
of Figure 4.2. The graph transformation that is shown in this figure can be
performed either logically or physically.

54

Data collection
for billing aspect

Flight process

 receive
flight request

 Flight search
Berlin Air

send flight
offers

 Flight search
Tunis Air

 Make
 Offer

receive
package request

 Flight search
Berlin Air

send package
offers

 Hotel search
MyHotels

 Make
 Offer

Package process

 pointcut

 receive
flight request

send flight
offers

 Flight search
Tunis Air

 Make
 Offer

receive
package request

send package
offers

 Hotel search
MyHotels

 Make
 Offer

 increment
counter

 Flight search
Berlin Air

 increment
counter

Flight process Package process

 advice

 increment
counter

 proceed

 Flight search
Berlin Air

Figure 4.2: Data collection for billing as an aspect

Activity execution time measurement

Figure 4.3 shows an aspect, which modularizes the execution time measurement
concern. The pointcut of this aspect selects the flight search activities in the
flight process and in the travel package process. The execution time of these
activities should be measured.

Execution time
measurment aspect

Flight process

 receive
flight request

 Flight search
Berlin Air

send flight
offers

 Flight search
Tunis Air

 Make
 Offer

receive
package request

 Flight search
Berlin Air

send package
offers

 Hotel search
MyHotels

 Make
 Offer

Package process

 start Timer

 pointcut

 advice

 stop Timer

 proceed

 Flight process

 Flight search
Berlin Air

send flight
offers

 Flight search
Tunis Air

 Make
 Offer

receive
package request

 Hotel search
MyHotels

Package process

 Stop Timer

 Start Timer

 Flight search
Berlin Air

 Start Timer

 Stop Timer

send package
offers

 Make
 Offer

receive
 flight request

Figure 4.3: Activity execution time measurement as an aspect

The advice of this aspect contains an activity for starting a timer, which is
executed before the join point as well as an activity for stopping a timer, which
is executed after the join point. The logical effect of composing this aspect with
the workflow graphs of the flight process and travel package process is shown
on the right hand side of Figure 4.3.

55

Workflow-level security

The level-2 authorization concern can be modularized using an aspect, which
works in a similar way to the execution time measurement aspect. The pointcut
of the security aspect selects the activities for whose data the users should gain
access only during the execution of the activity.

Like the execution time monitoring aspect, the security aspect uses an
around advice, which calls the authorization system before and after the ex-
ecution of each activity that is selected by the pointcut. The execution of the
join point activities is integrated between the two calls to the authorization sys-
tem by using the proceed activity. This aspect will not be shown because it is
very similar to the execution time measurement aspect.

A workflow change: adding car rental logic

The workflow aspects presented so far modularize crosscutting concerns. As-
pects can also be used for expressing workflow changes in a modular way.

In Figure 4.4, an aspect adds car rental logic to the travel package process
and to the flight process. The pointcut of this aspect selects the activities send
package offers and send flight offers.

 Car rental aspect

 receive
flight request

 Flight search
Berlin Air

send flight
offers

 Flight search
Tunis Air

 Make
 Offer

receive
package request

 Flight search
Berlin Air

send package
offers

 Hotel search
MyHotels

 Make
 Offer

package process

 pointcut

 advice

 Flight search
Berlin Air

send flight
offers

 Flight search
Tunis Air

 Make
 Offer

send package
offers

 Hotel search
MyHotels

 Make
 Offer

 Flight search
Berlin Air

flight process

 receive
flight request

receive
package request

flight process
package process

 proceed

 Car search

 Update
 Offer

 Car search

 Update
 Offer

 Car search

 Update
 Offer

Figure 4.4: A change aspect for adding car rental logic

The advice activity of this aspect is a composite activity that encloses a
car search activity and another activity that extends the current offers of the
workflow process with a car rental proposition.

The effect of composing this change aspect with the workflow graphs of the
flight process and the travel package process is to add the advice activity before
the activities send flight offers and send package offers, as shown on the right
hand side of Figure 4.4.

This figure might wrongly suggest that aspects and processes are composed
statically at design-time. This PhD work advocates dynamic composition mech-
anisms, which enable workflow aspects such as the car rental aspect to modify

56

workflow processes at runtime, and thus make them more adaptable. How such
a dynamic composition mechanism can be embedded in the workflow engine is
elaborated in more details in Section 4.4.5.

4.3.4 Discussion

The examples of workflow aspects presented so far improve the modularity of
the workflow schemes of the flight process and the travel package process.

All activities that belong to a crosscutting concern or a workflow change
are encapsulated in workflow aspects. They are no longer scattered across the
different workflow schemes. The base workflow processes focus only on the
business logic concern and are not tangled.

The decision about where to integrate the advice activities during the execu-
tion of the workflow process is also localized in the pointcut, which can be easily
extended to select other activities without modifying the processes2. Moreover,
with workflow aspects, any changes to the crosscutting functionality can be done
in a non-invasive way by modifying the advice only, and not several workflow
processes as it is the case without workflow aspects (cf. Chapter 3).

In addition, workflow aspects allow a modular expression of workflow changes
as first-class entities. With aspects, workflow changes are expressed at the same
abstraction level as workflow processes. Consequently, they can be understood
and managed more easily. Moreover, they can be switched on and off flexibly
as needed.

Aspectual workflow graphs support only the functional and behavioral work-
flow perspectives. Consequently, they illustrate only how the activities are mod-
ularized in a better way by using workflow aspects. In addition to the modular-
ization of activities, workflow aspects also modularize the workflow constructs
that correspond to the informational perspective (e.g., variables), the organi-
zational perspective (e.g., participant declarations), and the operational per-
spective (e.g., application declarations). This will be shown in the next chapter
with the AO4BPEL workflow language, which supports the informational and
the operational/organizational perspectives in addition to the functional and
behavioral perspectives. That is, workflow aspects modularize all workflow con-
structs that implement a given workflow change in addition to the decision on
where and when a workflow change should be applied.

4.4 Aspect-Oriented Workflow Languages

Like any other aspect-oriented language, aspect-oriented workflow languages
have a join point model, a pointcut language, and an advice language. How-
ever, these concepts are different from their counterparts in aspect-oriented
programming languages.

In the following, the requirements of aspect-oriented workflow languages with
respect to join point models, pointcut languages, and advice languages will be
presented. Moreover, two different approaches for the composition of workflow
aspects and workflow processes will be discussed.

2This property is called obliviousness [81].

57

4.4.1 Join point model

The join point model defines the set of points in the execution, which can be
captured by the pointcut of an aspect-oriented language. As the advice and the
base application are defined separately, join points provide a means to specify
when the advice should join the execution of the base application.

In aspect-oriented programming languages, join point models allow to select
points in the execution of an object-oriented program such as method calls, field
accesses, constructor calls, exception throwing, etc.

In aspect-oriented workflow languages, the activity-based join point model is
the most intuitive one. In such a model, join points correspond to the execution
of activities. Thereby, two kinds of join points can be differentiated: activity join
points (or process-level join points) and internal join points (or interpretation-
level join points). The former are coarse-grained points capturing the start or
the completion of activity execution, whereas the latter are more fine-grained
capturing internal points during the execution of an activity. Internal join points
are needed when the granularity level of the activity is not sufficient to support
some crosscutting concern. In aspectual workflow graphs, only activity join
points are supported.

Besides the activity-based join point model, it is useful that the join point
model exposes other points in the workflow execution such as the creation or
termination of a workflow process instance, the assignment of a participant to
an activity, the reading or writing of some workflow data, the invocation of an
external application that executes an activity, etc.

4.4.2 Pointcuts

The pointcut language provides means to select a set of related join points. For
example, the pointcut language of AspectJ provides a set of pointcut designa-
tors such as call (for selecting method call join points), execution (for selecting
method execution join points), get and set (for selecting read/write field access).

To express crosscutting structures, the pointcut languages of aspect-oriented
workflow languages should support quantification [81, 121], i.e., the ability to
select join points spanning different workflow processes. For example, it should
be possible to select all occurrences of some activity that is reused in several
workflow processes such as the flight search activity, which is used in the flight
process and in the travel package process.

The pointcut language of aspectual workflow graphs supports only the func-
tional perspective, which is the minimal requirement to pointcut languages for
workflows. A powerful pointcut language should provide means for a perspective-
oriented selection of join points.

Beyond the functional perspective, it makes sense to select all join points
where some activity a is executed after another activity b (behavioral perspec-
tive), where some participant executes any activity (organizational perspective),
where a given workflow variable is read or modified (informational perspective),
where an external application is called (operational perspective), etc.

Although such higher-level perspective-oriented pointcuts can be mapped
to activity-oriented pointcuts, supporting the different workflow perspectives
directly brings several benefits.

58

First, it allows the expression of the crosscutting structure of some concerns
in a more natural and easy way. For instance, the join points where data per-
sistence is needed could be selected in a more direct way when the pointcut
language supports the informational perspective. This would allow program-
mers to express pointcuts such as select all join points where a variable var is
modified, or select all join points where the performer is not a manager.

Second, perspective-oriented pointcuts are robust. For instance, assume that
a data manipulation activity is added to a workflow process and that the new
activity modifies the workflow variable var. If a persistence aspect uses an
activity-oriented pointcut, where activities are referenced by name, the existing
pointcut will not match the new activity. If that aspect uses a data-oriented
pointcut, the new activity will be matched because the pointcut references only
the variable var and not the activities that modify it.

Sometimes, a combination of several perspective-oriented pointcut designa-
tors allows for a more direct expression of crosscutting structures. For instance,
in the case of security aspects, join points where security advice should be ex-
ecuted can be expressed more easily with a pointcut language that supports
the organizational perspective (which user performs the activity) and the oper-
ational perspective (which application is invoked for that and whether it is local
or remote).

The pointcut language could operate on a graphical representation of the
workflow processes like in aspectual workflow graphs (visual pointcuts), or on
a text-based workflow schema like in XML-based workflow languages such as
BPEL or XPDL. Visual pointcuts can be defined easily by business analysts,
who model workflow processes using graphical tools. Visual pointcuts can be
transformed to pointcuts that operate on a text-based workflow schema. For
instance, in the case of BPEL, one could extend a graphical BPEL editor with
some functionality to define pointcuts visually and generate some XPath-based
pointcuts out of them.

4.4.3 Advice

The advice language defines the crosscutting functionality that needs to be
executed at the set of join points that are captured by a pointcut. The advice
of a workflow aspect can be applied either to all instances of the workflow
process (process-level deployment) or to some workflow instances only (instance-
level deployment). These two deployment strategies allow workflow aspects
to support evolutionary and ad-hoc workflow changes. The pointcut language
should provide constructs to specify the advice deployment strategy.

In aspect-oriented programming languages, the advice language is generally
the same as the base programming language. For example, the advice language
of AspectJ is Java. In aspect-oriented workflow languages, the advice language
should be the same as the base workflow language [26, 34] to avoid any paradigm
mismatches for the workflow designers. There are some proposals for using some
programming language as advice language [57] in a similar way to BPELJ [18],
which allows adding Java code snippets to BPEL processes.

Proposals such as [18, 57] break the two-level programming paradigm [125],
which is a key principle in workflow management denoting the separation be-
tween activity specification and activity implementation. These proposals mix
the process flow logic and the activity implementation. In addition, they break

59

the portability of workflow processes (e.g., BPEL processes will no longer run
on any BPEL engine) and are also very dependent on the workflow engine (e.g.,
BPEL processes with BPELJ code will not run on a BPEL engine that is im-
plemented in C++).

Moreover, when the workflow language is used as advice language it is im-
portant to think about the effects of aspects on the base workflow processes
because the advice add new activities to the workflow processes. Designers of
aspect-oriented workflow languages should consider and study how the advice
affects and interferes with constructs of the base workflow language such as fault
handling and compensation handling constructs.

Aspect-oriented programming languages support three types of advice: be-
fore, after, and around. These advice execute respectively before, after, or
instead of the join points that are selected by the pointcut. The advice in work-
flow aspects also need to specify the execution order of the advice activity with
respect to the join point activity. This order can be specified using workflow
control patterns [183] such as sequence, parallel split, and synchronization.

The sequence pattern covers the advice types before and after, which are
known from aspect-oriented programming languages. It is also possible to inte-
grate the join point activity in the middle of the advice activity, which is similar
to the around advice in aspect-oriented programming languages. In addition,
it is possible to define a parallel advice, which executes the advice activity con-
currently to the join point activity, and a synchronization advice, which ensures
that the advice activity and the join point activity wait for each other before
the workflow execution proceeds.

In aspect-oriented workflow languages, the advice language may extend the
base workflow language with special constructs such as the proceed activity,
which acts as a place holder for the join point activity. Moreover, the advice
language must provide context collection constructs that allow the advice ac-
tivity to access the context of the current join point activity. For example, a
persistence advice needs to access the input and output variables of the join
point activity before saving them to the database. Advice languages without
context collection constructs are not very useful.

The join point context includes the input and output variables of the join
point activity, the participant assignment information, and the application as-
signment information. In addition, that context may also provide access to
the data, the participants, and the applications that are declared in the parent
process of the join point activity.

The advice language should provide context collection constructs that allow
a generic access to the join point context. Genericity is important because a
pointcut could select many activities and may be different types of activities.
Therefore, the advice cannot for instance refer to the input variable of an activity
join point by name.

In addition to context collection, the advice language should also provide
reflective constructs to access meta-data about the current join point activity
(e.g., activity name, activity type) and its parent workflow process (after the
composition). For example, a logging advice, which logs invocations of some
partner, needs to access the name of the current join point activity to produce
a useful log entry.

It is also necessary to provide constructs for specifying advice precedence to
avoid incorrect behaviors. For instance, the data collection for billing aspect

60

must execute after the execution time measurement advice. Otherwise, the
measured execution time of the flight search activity would include the execution
time of the activity increment counter.

4.4.4 Aspects

The examples presented in Section 4.3.3 show only the activities that implement
a crosscutting concern or a workflow change and the control-flow edges between
them because aspectual workflow graphs support only the functional and be-
havioral perspectives. However, the activities that implement a crosscutting
concern or a workflow change need their input and output data to be defined
and set appropriately. They may also require new workflow participants and
external applications for their execution.

A workflow aspect is a module that encapsulates all workflow constructs
(i.e., the activities, the transitions, the variables, the participant declarations,
and the application declarations) that implement a crosscutting concern or a
workflow change.

Aspects in workflow languages do not replace aspects in programming lan-
guages. They are rather complementary. That is, in certain scenarios one may
need workflow aspects at the workflow level (programming in the large [66]) and
programming aspects at the activity implementation level (for programming
in the small [66]). For example, workflow aspects can be used to implement
process-level security, whereas AspectJ aspects can be used in the Java-based
implementation of a partner Web Service to secure SOAP messages.

When writing workflow aspects, the programmer has to care about the effects
of the aspect on the different workflow perspectives. In particular, the advice
may have to fix the data flow of the workflow process. For example, an around
advice may skip some activity that sets a workflow variable, which is used later
in the workflow process. In such a case, the programmer is responsible for fixing
the data flow.

In addition to modularizing crosscutting concerns, workflow aspects can also
be used for expressing workflow changes as first-class entities in a modular way.
The pointcut selects the activities that are affected by the change and the ad-
vice defines the change logic. As in the case of crosscutting concerns, the aspect
provides a module concept that encapsulates all workflow constructs that im-
plement the change.

The use of workflow aspects for expressing changes brings several benefits.
First, workflow changes can be switched on/off flexibly, i.e., certain variations
such as switching pricing policies on and off can be accommodated easily with-
out editing workflow schemes. Second, some variations can be applied more
selectively to specific instances. Third, undoing temporary changes is no longer
a problem. Rather than migrating workflow instances from a source schema to
a destination schema as done in [30, 157], one must just undeploy the change
aspects. Fourth, with appropriate composition mechanisms, workflow aspects
can be used to dynamically adapt workflow processes.

61

4.4.5 Aspect/Process composition

A mechanism is required for the integration of workflow aspects with workflow
processes. In aspect-oriented programming languages, this mechanism is called
weaving. The composition of aspects and processes is performed at compile time
in static weaving approaches and at runtime in dynamic weaving approaches.
Similarly, in aspect-oriented workflow languages, the composition of workflow
aspects and workflow processes can be performed statically (i.e., before deploy-
ing the process) or dynamically (i.e., at workflow execution time). Moreover,
the composition can be done physically or logically, which results in two com-
position approaches:

Process transformation

In this approach, the composition tool merges the workflow aspects with the
workflow processes (physical transformation). This tool performs the reverse
work of what is shown in Figure. 4.1. It takes a workflow process and a set of
workflow aspects as input and generates a new workflow process as output. This
approach is implemented in the composition mechanism of the recent aspect-
oriented workflow language Padus [26].

The process transformation approach supports static composition. It is sim-
ilar to the static weaving approach of AspectJ [96], in which the weaver trans-
forms the byte code of Java classes to integrate aspects. The output classes of
the AspectJ weaver have ordinary Java byte code and can be therefore inter-
preted by any Java interpreter.

One advantage of static process transformation is that the output workflow
schema, which is generated by the process transformation tool is an ordinary
schema without any aspect-oriented extensions. That is, the output workflow
schema can be deployed on any workflow engine that supports the base workflow
language.

Moreover, with static process transformation one would have two versions
of the workflow schema: one before the composition and one after the compo-
sition. When workflow aspects are used for capturing non-functional concerns,
the version before the composition allows to understand the business process by
abstracting away from technical details, whereas the version after the composi-
tion can be used to exactly understand and predict the workflow process that
will be executed, which is necessary for workflow auditing, workflow log mining,
and workflow debugging.

However, the process transformation approach has several limitations. First,
the composition cannot be done at runtime unless the workflow engine pro-
vides appropriate APIs for modifying the runtime representation of a work-
flow process, which is generally not the case. If such APIs are provided, the
aspect-oriented workflow language would no longer be independent of the en-
gine. Second, the process transformation approach cannot support pointcuts
that depend on runtime data and instance-based aspect deployment, unless
complex checks are added to the workflow process. Third, it is not possible
in the process transformation approach to deploy/undeploy aspects at runtime.
Fourth, aspect-orientation is supported at the workflow specification level in
this approach but not at the workflow execution level, i.e., workflow aspects do
not exist as first-class runtime entities inside the workflow engine.

62

Aspect-aware workflow engine

In this approach, the workflow engine is modified to check for aspects before
and after executing each activity. These checks are built at appropriate points
in the activity lifecycle. If a pointcut matches the execution of some activity,
the corresponding advice will be executed. This approach was adopted for the
implementation of the AO4BPEL language, which will be presented in the next
chapter.

Unlike the process transformation approach, the workflow process is not
transformed physically. Only the interpretation of the engine is modified (logical
transformation).

This approach supports easily the dynamic composition of aspects and pro-
cesses, which improves the flexibility and adaptability of workflow-based appli-
cations. It allows to deploy and undeploy aspects that change running workflow
instances. These aspects can be switched on and off flexibly without editing the
workflow schema or starting another static process transformation and redeploy-
ing the process (as in the previous approach). This is especially important for
long-running processes where it is unfeasible to stop a workflow instance, edit
the schema, and redeploy the process, because in such a case one would have
to undo the previously completed work of the interrupted workflow instance
and ensure that no inconsistency occurs. Moreover, the dynamic adaptation is
necessary when unpredicted events such as faults happen.

In the aspect-aware engine approach, aspects are supported as first-class
entities (like processes) even at runtime. This approach allows several aspect
management functionalities to be provided by the aspect-aware engine, rather
than requiring users to implement them manually in the workflow process. For
example, pointcuts that depend on runtime data and instance-based aspect
deployment can be supported without adding complex hook activities to the
workflow process to evaluate runtime conditions, as it is the case in the pro-
cess transformation approach. The latter requires adding hook activities to the
workflow process, which raises the complexity of the workflow schema and makes
it difficult to understand.

One may also argue that the aspect-aware engine approach makes the aspect-
oriented workflow language dependent on a particular workflow engine. How-
ever, this PhD work proposes to have standard workflow engines built with
native support for workflow aspects according to the aspect-aware engine ap-
proach. This means that standard BPEL engines should provide native support
for aspect-oriented constructs. The benefits of such aspect-aware workflow en-
gines will be shown in the next chapters.

Tasks of the composition mechanism

Independently of the composition approach, the composition mechanism has to
tackle several common tasks such as pointcut matching and resolution of special
constructs.

First, the composition mechanism has to decide whether an activity of the
workflow process is matched by some pointcut (pointcut matching). Once a
pointcut matches a process activity, the composition mechanism has to integrate
the execution of the respective advice activity as explained in Section 4.3. The
resulting execution order should be the same as if the join point activity is

63

replaced by a composite activity that may contain the join point activity. The
ordering constraints of advice activity and join point activity depend on the
advice type.

Second, the composition mechanism must enable the execution of the advice
activities by the workflow engine as any other process activities. That is, aspect-
local declarations for data, participants, and applications should be added to
those declared by the workflow processes that are affected by the aspect (i.e., the
processes to which the advice activity will be added). Moreover, the composition
mechanism has to resolve all special constructs that are used in the advice, such
as context collection constructs, reflection constructs, and the proceed activity.

For example, assume that a generic context collection construct is used in
an after advice to access the input variable of the join point activity. Moreover,
the pointcut that is associated with this advice matches three activities. In
such a scenario, the composition mechanism will insert the advice activity after
three different activities. At each join point, the composition mechanism should
replace the generic context collection construct by the name of the respective
input variable.

4.5 Related Work

This section presents some works that propose using aspects in the context of
workflow management. None of these works uses aspects at the level of workflow
languages.

In a position paper [16], Bachmendo and Unland propose an aspect-based
approach for the dynamic evolution of workflow instances. In that approach,
AspectJ aspects are woven with the object-oriented implementation of a work-
flow management system to support several kinds of control flow adaptations
(e.g., insertion of a new activity to the process or replacement of an activity by
another) and resource adaptations (i.e., the dynamic assignment of resources to
activities). In that work, Aspect-Oriented Programming is used at the workflow
implementation level and not at the workflow specification level.

Another paper [165] proposes the decomposition of a workflow specification
into several aspect specifications, respectively an aspect for each workflow per-
spective. The vision of that paper is to have the different perspectives merged
by an appropriate weaver, but that work does not explain whether and how such
a weaver can be implemented. In aspect-oriented workflow languages, workflow
aspects, which specify the different concerns rather than the different perspec-
tives, are composed with the workflow process. This chapter presented two
approaches for composing aspects and processes.

In [179], Odgers and Thompson propose an aspect-oriented process engi-
neering approach, which combines Business Process Management and Aspect-
Oriented Programming to enable more flexible business processes. In that ap-
proach, the definition of a business process consists of a generic process pattern
and several process aspects. The latter are activities that can be included in
order to customize the process execution by a particular resource. In that work,
processes are specified in Java and process aspects are implemented in AspectJ.

The papers mentioned so far do not introduce any aspect-oriented constructs
(such as pointcuts, join points, advice) to workflow languages. They just use
aspect-oriented programming languages at the workflow implementation level.

64

In contrast, aspect-oriented workflow languages provide the workflow designer
with aspect-oriented language constructs that support the modularization of
crosscutting concerns and workflow changes.

Currently, there are three proposals for aspect-oriented workflow languages.
The first one is AO4BPEL [33, 34, 40], which will be presented in the next
chapter. The other two proposals [26, 57] are also extensions to the Web Service
composition language BPEL. A detailed comparison of the languages presented
in [57] and [26] with AO4BPEL will be given in the next chapter.

4.6 Conclusion

This chapter introduced aspect-oriented workflow languages as a solution for the
problems of crosscutting concern modularity and change modularity in current
workflow languages.

Aspect-oriented workflow languages enable a concern-based decomposition
of workflow specifications and introduce workflow aspects as language means for
crosscutting concern modularization and workflow change modularization.

Moreover, this chapter presented aspectual workflow graphs, which illustrate
the concepts of aspect-oriented workflow languages graphically (to allow an easy
understanding) and independently of any specific workflow language (to show
that the approach is generic).

In addition, this chapter defined several requirements on the join point mod-
els, the pointcut languages, the advice languages, and the composition mecha-
nisms of aspects and processes in aspect-oriented workflow languages.

To show the feasibility of the concepts that were presented in this chapter us-
ing aspectual workflow graphs, the next chapter will present an aspect-oriented
workflow language for Web Service composition called AO4BPEL. Unlike as-
pectual workflow graphs, which support only the functional and behavioral per-
spectives, AO4BPEL supports all five workflow perspectives.

65

CHAPTER 5

AO4BPEL: an Aspect-Oriented Workflow Language for
Web Service Composition

5.1 Introduction

This chapter1 presents AO4BPEL, which is an aspect-oriented workflow lan-
guage for Web Service composition. The design and implementation of this
language can be considered as a proof-of-concept for aspect-oriented workflow
languages.

AO4BPEL incorporates many of the concepts that were presented in Chap-
ter 4. Its join point model supports both activity join points and internal
join points. Its pointcut language is based on XPath. The advice language of
AO4BPEL is BPEL, whereby some special constructs can be used, e.g., for con-
text collection. This chapter will also define the effects of AO4BPEL advice on
advanced BPEL concepts such as fault handling, compensation handling, and
message correlation.

To illustrate things, this chapter will present several examples of AO4BPEL
aspects, which modularize the crosscutting concerns and workflow changes that
were introduced in Chapter 3. In Chapter 4, these aspects were shown graph-
ically using aspectual workflow graphs, which support only the functional and
behavioral workflow perspectives. The current chapter will show how AO4BPEL
aspects modularize not only the activities but also the variables (the informa-
tional perspective) and partners (the organizational/operational perspective)
that implement a given crosscutting concern or a workflow change.

In addition, this chapter will present the AO4BPEL engine, which was im-
plemented on top of IBM’s BPEL engine BPWS4J [104]. The AO4BPEL engine
is an aspect-aware engine that supports the dynamic composition of aspects and
processes.

1This chapter is based on the papers Aspect-Oriented Web Service Composition with
AO4BPEL, ECOWS 2004 [34] and AO4BPEL: An Aspect-Oriented Extension to BPEL,
World Wide Web Journal 2007 [40].

66

The remainder of this chapter is organized as follows. Section 5.2 introduces
the main concepts of the AO4BPEL language and explains the effects of advice
on fault handling, compensation handling, and correlation. Section 5.3 presents
examples of AO4BPEL aspects. Section 5.4 describes the implementation of
the AO4BPEL engine. Section 5.5 reports on related work and Section 5.6
concludes this chapter.

5.2 Overview of AO4BPEL

AO4BPEL is an aspect-oriented extension to BPEL that supports the definition
of workflow aspects for BPEL processes.

AO4BPEL aspects are XML documents, in which the aspect element is the
top level element. An aspect defines one or more pointcuts (the pointcut ele-
ment) and advice (the advice element).

The content of the pointcut element is an XPath [50] expression that selects
a set of activities. The content of the advice element is a BPEL activity that
implements a crosscutting concern or a workflow change. A pointcut and advice
can be associated by nesting the respective pointcut and advice elements in a
pointcutandadvice element.

Like a BPEL process, an AO4BPEL aspect can define partner links, vari-
ables, fault handlers, compensation handlers, and correlation sets. These con-
structs have the same syntax as in BPEL.

5.2.1 Join point model and pointcut language

Join point model

AO4BPEL supports two kinds of join points: activity join points, which cor-
respond to the execution of BPEL activities, and internal join points, which
correspond to internal points during the interpretation of messaging activities.

Internal join points capture well-defined points at the interpretation level
rather than at the process level. The interpretation of a messaging activity is
broken into several internal join points, which capture for instance the point
where the outgoing SOAP message of an invoke activity will be sent out.

Internal join points allow the aspect to express statements such as ”before
a SOAP message is sent out in the course of interpreting a messaging activity,
get that message and do this and that”. In this example, the internal join point
is the point in the execution where a SOAP message of a messaging activity has
been generated and it is about to be sent out.

Internal join points are especially relevant for capturing middleware concerns
such as security [36] and reliable messaging [42]. More details on the usage of
these join points for providing middleware support to BPEL processes will be
given in Chapter 6.

A query-based pointcut language

In aspect-oriented programming languages such as AspectJ, pointcuts are de-
fined by means of pointcut designators, which are predicates on join points.
AspectJ provides a set of predefined pointcut designators such as call, which
selects method call join points.

67

The pointcut language of AspectJ has three limitations: a) it does not pro-
vide a general-purpose mechanism to relate different join points, b) it is not
extensible, i.e., the user cannot define further pointcut designators, and c) it
does not support semantic pointcuts [89, 117], i.e., it specifies how the interest-
ing join points are implemented rather than what these join points are [74].

Query-based pointcut languages [74] solve these limitations by using query
languages such as XQuery [190]. First, such languages allow a more precise spec-
ification of the pointcuts because the semantics of query languages are generally
clear. Second, they enable open pointcut languages, where users can define their
own pointcut designators. Third, they support more semantic pointcuts by spec-
ifying what the interesting join points are rather than how these join points are
implemented [74].

AO4BPEL also uses a query-based pointcut language. As BPEL process
definitions are XML documents, XPath [50] is a natural choice as pointcut
language. AO4BPEL does not come with predefined pointcut designators, i.e.,
each XPath expression that selects BPEL activities is a valid pointcut.

The pointcuts can use the attributes of BPEL activities as predicates to
choose relevant join points. For example, to refer to all invocations of the
operation findAFlight, the pointcut can use the attribute operation of the invoke
activity as shown below:

<pointcut>
//invoke[@operation=”findAFlight”]
</pointcut>

This pointcut selects the invoke activities that have their operation attribute
set to findAFlight in any BPEL process. This example shows that the point-
cut language of AO4BPEL supports the selection of activities across different
processes. Thus, this pointcut language provides sufficient support for quantifi-
cation. To restrict the selection of join points to a given process, e.g., to the
travel package process, one can use the following pointcut:

<pointcut>
/process [@name=”travelPackage”]//invoke[@operation=”findAFlight”]
</pointcut>

It is also possible to define composite pointcuts by using the set operators
of XPath such as the union operator and the intersection operator.

Cross-layer pointcuts

The pointcuts that result from combining process-level and interpretation-level
pointcut designators intercept points in the execution of two different layers.
Therefore, they are called cross-layer pointcuts.

In AO4BPEL, the pointcut element has a type attribute, which specifies
whether the pointcut selects activity join points (the default) or internal join
points. In addition, it has a designator attribute, which specifies the pointcut
designator.

For capturing internal join points, AO4BPEL introduces two pointcut des-
ignators: soapmessagein and soapmessageout. These pointcut designators are
used together with pointcut designators that select messaging activities.

68

The soapmessagein pointcut designator works in conjunction with the ac-
tivities invoke and receive. When used with invoke, it captures the join points
where a SOAP message has been received by the engine as a response for an
invoke. When used with receive, soapmessagein captures the join points where a
SOAP message that matches a receive activity is received by the BPEL engine.

The soapmessageout pointcut designator works in conjunction with invoke
and reply. When used with reply, it captures the join points where the engine has
generated the SOAP response message corresponding to that reply and will send
it. When used with invoke, soapmessageout captures the join points where the
engine has generated the SOAP request message corresponding to that invoke
and will send it.

The pointcut shown below selects the internal join points, where the SOAP
request message of the invoke activity, which calls the operation findAFlight,
has been generated and is about to sent out.

<pointcut type=”internal” designator =”soapmessageout”>
//invoke[@operation=”findAFlight”]
</pointcut>

Perspective-oriented pointcuts

The pointcut language described so far is activity-oriented. It covers only the
functional and the behavioral workflow perspectives. Beyond these two per-
spectives, AO4BPEL supports perspective-oriented pointcuts such as variable-
oriented pointcuts (the informational perspective) and partner-oriented point-
cuts (the operational and organizational perspectives).

A variable-oriented pointcut selects all activities that read or write a given
process variable. In such pointcuts, the name attribute, which should be set
to the name of the variable, is required and the access attribute is optional.
For example, the following pointcut selects all activities that write the variable
clientresponse.

<pointcut>
// variable [@name=”clientreponse” and @access=”write”]
</pointcut>

A partner-oriented pointcut selects all interactions with a given partner.
Thereby, one could specify whether data is sent to or received from that partner.
In such pointcuts, the name attribute is required and the pattern attribute is
optional. For example, the following pointcut selects all activities, in which the
process interacts with the partner flightService and sends data to that partner.

<pointcut>
//partner [@name=”flightService” and @pattern=”send”]
</pointcut>

The support for variable-oriented and partner-oriented pointcuts allows to
specify the crosscutting structure of some concerns in a more natural and direct
way. The variable-oriented pointcuts are better suited for data-related concerns
such as persistence, whereas the partner-oriented pointcuts are better suited for
concerns such as authorization and auditing.

69

Process-level and instance-level aspect deployment

AO4BPEL supports both process-level and instance-level aspect deployment.
With process-level aspect deployment, which is the default case, the advice
applies to all instances of a workflow process. With instance-level aspect de-
ployment, the advice applies only to some workflow instances. The pointcut
specifies whether the associated advice should be applied at the instance level
by using the optional condition attribute of the pointcut element.

The support for instance-level deployment in AO4BPEL is especially useful
when aspect activation depends on runtime data such as the value of some
process variable. For example, in an extended version of the travel agency
scenario, one could activate a different pricing aspect for each process instance
according to the pricing strategy selected by the customer. Thereby, some
discounts may be given depending on the customer identifier.

Instance-level aspect deployment is also needed when a car rental aspect
should extend the travel package process with car rental propositions for some
destinations only. Below is a pointcut that selects the reply activities in the
workflow instances of the travel package process, in which the destination city
is Tunis.

<pointcut condition=”getVariableData(’ clientrequest ’,’ destination ’) == ’Tunis’”>
//process[@name=”travelPackage”]//reply[@operation=”getTravelPackage”]

</pointcut>

5.2.2 Advice

The advice language of AO4BPEL is BPEL, i.e., the content of the advice
element is a BPEL activity. However, some special constructs can be used in
the advice, e.g., for context collection and reflection.

The advice element has an attribute type, which specifies whether the ad-
vice is a before, after, or around advice. These advice types are executed re-
spectively before, after, or instead of the join point activities that are selected
by the associated pointcut. In addition, AO4BPEL supports the advice types
before soapmessageout, after soapmessagein, around soapmessagein, and around
soapmessageout. These advice types are used only in conjunction with cross-
layer pointcuts. They are executed respectively before, after, or instead of the
internal join points that are selected by the associated pointcuts.

The advice can also define fault handlers, compensation handlers, and cor-
relation sets. The handlers are added to the scope activity that encloses the
advice activity. If the advice activity is not a scope activity, the composition
mechanism of AO4BPEL embeds it automatically into a scope activity. More
details on fault handlers, compensation handlers, and correlation sets will be
given at the end of this section.

Context collection and reflection

In most cases, the advice activity needs to access the variables that are used by
the current join point activity or to get reflective information about the current
join point activity and/or its parent process. To support these requirements,
AO4BPEL provides special variables for context collection and for reflection.

70

Since a pointcut may select different activities that may have different types,
the context collection constructs should be generic. For example, consider a
logging aspect that logs the id and the price of all flight and travel package offers
that are sent to clients. The pointcut of this aspect selects the reply activities
of the flight process and the travel package process. The logging advice cannot
access the variable of the join point activity by specifying its name because the
two variables have different names.

To collect the data context of the join point activity, AO4BPEL provides
the special variables ThisJPInVariable and ThisJPOutVariable, which refer to
the input and output variables of the join point activity. ThisJPInVariable is
an alias to the input variable of an invoke activity, or to the variable of a receive
activity. ThisJPOutVariable is an alias to the output variable of an invoke
activity, or to the variable of a reply activity.

The following snippet shows an excerpt of the logging advice mentioned
above. With the variable ThisJPOutVariable, the advice accesses the part of-
ferid of the two reply join points in a generic way.

<copy>
<from variable=”ThisJPOutVariable” part=”offerid”/>
<to variable =”logVar” part=”id”/>

</copy>

The individual parts of the variables ThisJPInVariable and ThisJPOutVari-
able can be accessed by name as shown in this snippet. They can also be accessed
in a more generic way by using the reserved part names firstpart, lastpart, and
partN (where N is the index of the part).

To get reflective information about the join point, AO4BPEL provides the
special variable ThisJPActivity, which contains information about the current
join point activity such as process name, activity name, activity type, partner
link, port type, and operation name. The last three parts of this variable are
only set if the join point activity is invoke, reply, or receive.

Assume that the logging advice should be extended to log the name of the
reply activity that sent the flight or travel package offer to the client. This can
be done by using the variable ThisJPActivity as shown in the following code
snippet.

<copy>
<from variable=”ThisJPActivity” part=”name”/>
<to variable =”logVar” part=”activityName”/>

</copy>

To access the parent process of the join point activity, the advice can use
the special context collection construct ThisProcess(x), whereby x is the name
of a variable or a partner link that is defined in the parent process of the advice.
The following code excerpt shows how the advice invokes an operation on the
partner ppartner of the parent process.

<invoke name=”invokeProcessPartner” partnerLink=”ThisProcess(ppartner)” .../>

For the advice types that are associated with cross-layer pointcuts, AO4BPEL
provides two special variables soapmessage and newsoapmessage. These vari-
ables allow the programmer to access and interact with the SOAP messaging
layer.

71

The variable soapmessage is used to expose the SOAP message as part of
the context of an internal join point that is captured by the pointcut designators
soapmessagein and soapmessageout. For example, consider an encryption advice
of the type after soapmessageout, which encrypts the SOAP message of an invoke
activity using a security service. This advice can use the variable soapmessage to
access the SOAP request message of the invoke activity and pass it subsequently
to the security service.

The variable newsoapmessage is used in two ways. In conjunction with the
advice types before soapmessageout and after soapmessagein, this variable allows
the advice to override the SOAP message of the current join point activity by
a modified SOAP message. For example, the encryption advice can use that
variable to override the request message of the invoke activity by the encrypted
message after calling the security service.

In conjunction with around advice that do not contain a proceed activity, the
variable newsoapmessage is used to pass the response message of a synchronous
invoke activity to the process if needed. For example, consider a reliable mes-
saging advice, which sends the SOAP message of an invoke activity with the
exactly-once assurance using a reliable messaging service. This service has to
send the SOAP message on behalf of the process to ensure the required assur-
ance. Consequently, this service will receive the response message of that invoke
activity and not the process. In such a case, the variable newsoapmessage can
be used by the advice to pass the response message of the invoke activity back
to the process.

Advice execution order

Several advice can be executed at the same join point if their pointcuts select the
same join point activity. When these advice have different types, the AO4BPEL
implementation executes them in the following order: before → around → before
soapmessageout → around soapmessageout → around soapmessagein → after
soapmessagein → after.

In this order, advice that should be triggered before and instead of activity
join points are executed first. Then, advice that should be triggered at internal
join points during the execution of messaging activities are executed. Finally,
the after advice that should be triggered after activity termination.

When these advice have the same type, there can be ambiguity with regard
to the execution order. To avoid such ambiguities, the order attribute of the
advice element can be used to define the advice priority. The allowed values of
this attribute are integers (whereby low numbers mean high priority) and the
reserved keywords first and last.

For example, consider two after advice for logging and encryption. To ensure
that the encryption advice is executed before the logging advice, the programmer
can set the attribute order of the encryption advice to 1 and the attribute order
of the logging advice to 2.

72

Advice and faults

Fault handlers are BPEL constructs for handling the different faults that may
occur during the execution of the process activities. After composing the as-
pects with the processes, faults may occur during the execution of the advice
activity, which could affect the parent process. For example, consider the data
collection for billing advice, which calls an operation on a counting Web Service
to increment a counter after each invocation of some partner Web Service. If
the invocation of the counting Web Service fails the fault may be thrown to the
parent process of the join point activity.

However, as the aspect is an add-on to existing processes, it must take care
of the potential faults that may occur within the advice. That is, faults should
not propagate from the aspect to the process.

To enforce this requirement, the composition mechanism embeds each advice
in a scope activity that defines an empty catchall fault handler. The purpose of
the scope and the default catchall fault handler is to absorb any faults. Thus,
if the aspect does not define appropriate fault handlers for the faults that may
be thrown during the execution of the advice, the catchall fault handler absorbs
the fault and the process continues its execution normally. In this way, faults
never propagate from the advice to the process.

When a fault occurs inside the advice activity and the default catchall fault
handler is executed, the outgoing links of the advice are fired normally because
the advice scope handles the fault. As a result, the scope ends normally and the
values of its outgoing links are evaluated as usual. In particular, links leaving
from the enclosing flow are fired normally.

Advice and compensation

Long-running BPEL processes may not complete in a single atomic transaction.
Consequently, if a fault occurs during the execution of such a process, it becomes
necessary to reverse the effects of the activities that were completed.

For example, the booking process of the travel agency is such a long-running
process. First, the booking process checks the credit card number. Then, it
charges the credit card if the number is valid. After that, it issues the necessary
travel documents and sends them to the customer using a shipping service. If
the activity that issues the travel documents fails, the resulting state would be
inconsistent unless the charging of the credit card is reversed.

Compensation handlers are BPEL constructs for undoing previously com-
pleted activities. Compensation handlers are associated with a scope. They are
either called implicitly by the default fault handler, which calls the compen-
sation handlers of child scopes in reverse order of completion, or explicitly by
using the compensate activity.

For example, the programmer can embed each of the booking process ac-
tivities that may need to be reversed in a scope and define an appropriate
compensation handler to undo that activity. The parent activity of the book-
ing process should also be embedded in a scope. If the activity that issues the
travel documents throws a fault, the default fault handler of the parent scope
will call the compensation handler of all so far completed activities in reverse
order of completion, i.e., the compensation handler of the activity that charges
the credit card will be called.

73

In AO4BPEL, the composition mechanism inserts the advice activity into
the enclosing scope of the current join point. If some child activities of that
scope should be compensated for some reason (e.g., in a fault situation), it may
also be necessary to undo the advice activity. For example, consider a notifi-
cation aspect, which defines a pointcut for selecting the activity that charges
the credit card of the customer, and an after advice for sending an e-mail to
the customer about the success of the payment. If the activity that charges the
credit card needs to be compensated, e.g., because the activity that issues the
travel documents has failed, the advice of the notification aspect should be also
be compensated by sending another e-mail to the customer.

If the advice defines a compensation handler, then this handler should be
called by the AO4BPEL implementation in the same way as the compensation
handlers of the child scopes of the parent scope of the advice activity. That is, if
the notification advice defines a compensation handler (e.g., that sends another
e-mail to the customer to tell him that the booking could not be completed and
that her credit card will be credited), then this handler should be called by the
AO4BPEL implementation.

In the current implementation of AO4BPEL, this requirement is enforced
as follows: when the advice is composed with the process, the composition
mechanism gets a reference to the parent scope of the advice and adds the
compensation handler of the advice (if it exists) to the list of compensation
handlers that is managed by that parent scope. When the advice is unwoven, its
compensation handler is removed from that list. In this way, the compensation
handler is called correctly and the advice can be compensated as defined by the
BPEL specification.

Advice and correlation sets

Consider two different instances of the travel package process: one instance
searches for a vacation package in Tunis and another searches for a vacation
package in Frankfurt. As each instance calls the hotel Web Service to find an
accommodation two SOAP messages will be received by the BPEL engine.

These messages need to be routed correctly to the respective workflow in-
stance, i.e., the SOAP message with a hotel offer in Tunis should be delivered
to the workflow instance that looks for a vacation package in Tunis and not to
the other workflow instance.

Correlation sets are BPEL constructs for routing a SOAP message to the
respective process instance. This is done by matching parts of the message with
parts of the process variables. In the travel package process, the destination city
can be used in a correlation set. In this way, when the BPEL engine receives
two response messages from the hotel Web Service, it compares the name of the
destination city in these messages with the value of the part destination of the
process variable clientrequest in both instances. Then, the BPEL engine routes
the messages accordingly.

The problem of message routing exists also when aspects are used. In fact,
when the advice calls a partner Web Service via an invoke activity and the
response message comes in, the engine must identify the aspect instance that
made the invocation.

For example, consider a change aspect that adds functionality to search for
a rental car to the travel package process. Assume further that this aspect

74

applies to the two instances of the travel package process mentioned above. As
the advice of this change aspect calls the car rental Web Service, the AO4BPEL
engine will receive two response messages: one with a car proposition in Tunis
and the other with a car proposition in Frankfurt. Each of these messages should
be routed to the respective advice instance.

However, at runtime, the advice does not have an identity of its own because
it is triggered during the execution of several processes that are selected by the
pointcut. Consequently, even if the car rental aspect defines its own correlation
sets, the engine would have a problem in correlating the messages with the two
aspect instances.

This problem is solved as follows: the correlation sets that are defined by
the aspect are added by the composition mechanism of AO4BPEL to the parent
processes, in which the advice is integrated. For instance, when the response
messages of the car rental Web Service are received, the engine uses the correla-
tion sets that were added to the travel package process to route these messages.
In this way, the engine can route the messages correctly.

Advice restrictions

Aspects are only meant to modify the implementation of a composite Web
Service (the BPEL process) and not its interface (the WSDL). Therefore, using
the messaging activities receive, pick, reply, and event handlers for message
events in the advice should be only allowed when these BPEL constructs do not
require any change to the WSDL of the composite Web Service.

For example, the messaging activity receive requires a matching operation
in the WSDL file of the composite Web Service. If the advice uses that activity
it is necessary to modify the WSDL interface of the composite Web Service,
unless the matching operation is already present.

5.2.3 Aspect/Process composition

In the case of pointcuts selecting activity join points, the composition of aspects
with processes can be explained as a process transformation. In this transfor-
mation, which was illustrated in Chapter 4 using aspectual workflow graphs,
the composition mechanism inserts the advice activity into the parent activity
of the current join point. This explanation holds only when the pointcut of the
aspect captures activity join points and not internal join points.

The logical effect of this process transformation is to replace the join point
activities with a flow activity that may contain the join point activity. If the
join point activity is the source or target of some links, the flow becomes the
source or target of these links.

In the case of before advice, the composition mechanism adds a link that
goes from the advice activity to the join point activity. In the case of after
advice, the composition mechanism adds a link that goes from the join point
activity to the advice activity.

In the case of around advice, the join point activity can be integrated in
the middle of the advice execution using the special activity proceed, which is a
place holder for the join point activity.

For the advice types before soapmessageout, after soapmessagein, around
soapmessageout, and around soapmessagein, the advice activity is executed at

75

internal join points during the execution of the messaging activity according to
the semantics of the pointcut designator.

The composition of AO4BPEL aspects with BPEL processes can be done
either with the process transformation approach (physical transformation), or
with the aspect-aware engine approach (logical transformation), as explained
in Chapter 4. However, the process transformation approach works only for
aspects whose pointcuts select activity join points, because internal join points
are concepts at the interpretation level that have no counterpart at the process
level.

The current implementation of AO4BPEL is based on the aspect aware
engine approach, which allows the dynamic composition of aspects and processes
and supports internal join points. More details on the implementation of the
AO4BPEL engine will be given in Section 5.4.

5.3 Examples

In this section, some examples of AO4BPEL aspects will be presented. These
aspects were shown in Chapter 4 using aspectual workflow graphs.

5.3.1 Crosscutting concern modularization

The first aspect modularizes the concern data collection for billing and the
second aspect modularizes the concern measurement of activity execution time.

1 <aspect name=”Counting”>
2 <partnerLinks>
3 <partnerLink name=”CounterWS” partnerLinkType=”CounterPLT”
4 myRole=”caller” partnerRole=”counter”/>
5 </partnerLinks>
6 <variables>
7 <variable name=”increaseRequest” messageType=”increaseCounterInput”/>
8 </variables>
9 <pointcutandadvice>

10 <pointcut name=”Berlin Air Invocations”>
11 //invoke[@operation=”findAFlight”]
12 </pointcut>
13 <advice type=”after”>
14 <sequence>
15 <assign>
16 <copy>
17 <from expression=”1”/>
18 <to variable =”increaseRequest” part=”increaseBy”/>
19 </copy>
20 </assign>
21 <invoke partnerLink=”CounterWS” portType=”CounterPT”
22 operation=”increaseCounter” inputVariable=”increaseRequest”/>
23 </sequence>
24 </advice>
25 </pointcutandadvice>
26 </aspect>

Listing 5.1: The data collection for billing aspect

76

Data collection for billing

Listing 5.1 shows the AO4BPEL aspect that modularizes the data collection
for billing concern. This aspect declares a partner link (lines 3–4) to a counter
Web Service CounterWS, which provides the operation increaseCounter for in-
crementing a counter. This operation takes an integer parameter that will be
added to the total number of invocations. This aspect declares also a variable
(line 7) for holding this input parameter.

The pointcut of this aspect (lines 10–12) selects all invoke activities that call
the operation findAFlight on Berlin Air Web Service in any process. An after
advice (lines 13–24) is associated with the pointcut of this aspect. This advice
uses a sequence activity for defining the advice logic. The sequence activity has
a nested assign activity (lines 15–20) to set the variable increaseRequest, and
an invoke activity (lines 21–22) to call the operation increaseCounter on the
counter Web Service.

1 <aspect name=”PerformanceMonitor”>
2 <partnerLinks>
3 <partnerLink name=”AuditingWS” partnerLinkType=”AuditingPLT”
4 myRole=”caller” partnerRole=”measurer”/>
5 </partnerLinks>
6 <variables>
7 <variable name=”startTimerRequest” messageType=”startTimerInput”/>
8 <variable name=”stopTimerRequest” messageType=”stopTimerInput”/>
9 </variables>

10 <pointcutandadvice>
11 <pointcut name=”monitored activities”>
12 //invoke[@operation=”findAFlight”]
13 </pointcut>
14 <advice type=”around”>
15 <sequence>
16 <assign>
17 <copy>
18 <from variable=”ThisJPActivity” part=”name”/>
19 <to variable =”startTimerRequest” part=”activityName”/>
20 </copy>
21 <copy>
22 <from variable=”ThisJPActivity” part=”name”/>
23 <to variable =”stopTimerRequest” part=”activityName”/>
24 </copy>
25 </assign>
26 <invoke partnerLink=”AuditingWS” portType=”AuditingPT”
27 operation=”startTimer” inputVariable =”startTimerRequest”/>
28 <proceed/>
29 <assign>...</assign>
30 <invoke partnerLink=”AuditingWS” portType=”AuditingPT”
31 operation=”stopTimer” inputVariable =”stopTimerRequest”/>
32 </sequence>
33 </advice>
34 </pointcutandadvice>
35 </aspect>

Listing 5.2: The execution time measurement aspect

77

Execution time measurement aspect

Listing 5.2 shows the AO4BPEL aspect, which modularizes the activity execu-
tion time measurement concern.

This aspect declares the auditing Web Service as partner (lines 3–4). It also
declares two variables (lines 7–8) for holding the input parameters of the calls
to the operations startTimer and stopTimer on that partner.

The pointcut of this aspect (lines 11–13) selects all invoke activities that
call the operation findAFlight on Berlin Air Web Service. This pointcut can be
easily extended to monitor the execution time of other activities by using the
XPath union operator.

This aspect uses an around advice, which calls the operations startTimer
(lines 26–27) and stopTimer (line 30–31) on the auditing Web Service, respec-
tively before and after executing the join point activity. The proceed activity
(line 28) allows the advice to integrate the execution of the join point activity.

The operations startTimer and stopTimer take an input parameter that
identifies the monitored activity. This parameter is set by an assign activity
(lines 16–25) to the name of the current join point activity, which is accessed
by using the reflective AO4BPEL variable ThisJPActivity (lines 18 and 22).

5.3.2 Workflow change modularization

In Chapter 3, two examples of workflow changes were presented. The first
change is about adding car rental logic to the travel package process and to the
flight process. The second change is about replacing a bad performing partner
Web Service by another. These workflow changes will be modularized using
AO4BPEL aspects.

Adding car rental logic

The aspect AddCarRental, shown in Listing 5.3, declares a partner link to the
car rental Web Service (lines 3–4) and two variables (lines 7–8) for holding the
input and output parameters of the operation getCar that is called on that Web
Service (lines 24–25).

The pointcut of this aspect (lines 11–14) selects the reply activities in the
flight process and the travel package process. This pointcut is associated with a
before advice (lines 15–33) that comprises a sequence activity, which implements
the car rental logic.

This sequence activity contains an assign activity (lines 17–23) for setting
the input parameters of the operation getCar. These input parameters are
taken from the client request that was passed to the parent process by using the
context collection construct ThisProcess(clientrequest) (line 19).

After invoking getCar on the car rental Web Service (lines 24–25), the advice
uses an assign activity (lines 26–31) to add the car proposition to the return
data of the flight process and to the travel package process.

The return data of these processes is stored in the variables of the reply
activities that are selected by the pointcut. These variables are accessed from
the advice by using the context collection variable ThisJPOutVariable (line 29).

78

1 <aspect name=”AddCarRental”>
2 <partnerLinks>
3 <partnerLink name=”CarCompany” partnerLinkType=”CarPLT”
4 myRole=”caller” partnerRole=”carWS”/>
5 </partnerLinks>
6 <variables>
7 <variable name=”getCarRequest” messageType=”getCarInput”/>
8 <variable name=”getCarResponse” messageType=”getCarOutput”/>
9 </variables>

10 <pointcutandadvice>
11 <pointcut name=”about to reply”>
12 //process[@name=”travelProcess”]//reply[@operation =”getTravelPackage”] |
13 //process[@name=”flightProcess”]//reply[@operation=”getFlight”]
14 </pointcut>
15 <advice type= ”before”>
16 <sequence>
17 <assign>
18 <copy>
19 <from variable=”ThisProcess(clientrequest)” part=”deptDate”/>
20 <to variable =”getCarRequest” part=”startDate”/>
21 </copy>
22 ...
23 </assign>
24 <invoke partnerLink=”CarPortal” portType=”CarPT” operation=”getCar”
25 inputVariable =”getCarRequest” ouputVariable=”getCarResponse”/>
26 <assign>
27 <copy>
28 <from variable=”getCarResponse” part=”carinfo”/>
29 <to variable =”ThisJPOutVariable” part=”optionalinfo”/>
30 </copy>
31 </assign>
32 </sequence>
33 </advice>
34 </pointcutandadvice>
35 </aspect>

Listing 5.3: The car rental aspect

Replacing a bad performing partner

Listing 5.4 shows an aspect, which replaces all calls to the operation findAFlight
on Berlin Air Web Service by calls to the operation searchFlight on Tunis Air
Web Service.

The pointcut of this aspect (lines 11–13) selects the invoke activities that
call the operation findAFlight on Berlin Air Web Service.

The around advice of this aspect (lines 14–37) replaces each invoke activity
that is selected by the pointcut by an invoke activity (lines 23–25) that calls the
operation searchFlight on Tunis Air Web Service. In addition, the advice of this
aspect uses two assign activities. The first assign (lines 16–22) sets the input
variable of the new invoke activity. Thereby, the input variable of the join point
is accessed using the context collection variable ThisJPInVariable (line 19). The

79

second assign (lines 26–35) fixes the data flow in the modified workflow process
by setting the necessary parts of the output variable of the replaced join point
activity. The output variable of the join point activity is accessed using the
AO4BPEL context collection variable ThisJPOutVariable (lines 29 and 33).

1 <aspect name=”ReplacePartner”>
2 <partnerLinks>
3 <partnerLink name=”newFlight” partnerLinkType=”TunisAirPLT”
4 myRole=”caller” partnerRole=” flightprovider ”/>
5 </partnerLinks>
6 <variables>
7 <variable name=”newflightRequest” messageType=”searchFlightRequest”/>
8 <variable name=”newflightResponse” messageType=”searchFlightResponse”/>
9 </variables>

10 <pointcutandadvice>
11 <pointcut name=”Berlin Air Invocations”>
12 //invoke[@operation=”findAFlight”]
13 </pointcut>
14 <advice type= ”around”>
15 <sequence>
16 <assign>
17 ...
18 <copy>
19 <from variable=”ThisJPInVariable” part=”retDate”>
20 <to variable =”newflightRequest” part=”returnDate”>
21 </copy>
22 </assign>
23 <invoke name=”invokeTunisAirTP” partnerLink=”newflight”
24 portType=”TunisAirPT” operation=”searchFlight”
25 inputVariable =”newflightrequest” outputVariable=”newflightresponse”/>
26 <assign>
27 <copy>
28 <from variable=”newflightresponse” part=”flightData”/>
29 <to variable =”ThisJPOutVariable” part=”flightDetails”/>
30 </copy>
31 <copy>
32 <from variable=”newflightresponse” part=”flightNumber”/>
33 <to variable =”ThisJPOutVariable” part=”flightnum”/>
34 </copy>
35 </assign>
36 </sequence>
37 </advice>
38 </pointcutandadvice>
39 </aspect>

Listing 5.4: The partner replacement aspect

80

5.3.3 Discussion

To better see the advantages of AO4BPEL over other solutions with respect to
modularization of crosscutting concerns, recall the travel package process and
the flight process that were presented in Listings 3.2 and 3.3 in Chapter 3.

In order to keep track of the invocations of Berlin Air Web Service without
AOP, the programmer had to add the same activity (i.e., the advice activity of
the data collection for billing aspect) as well as the corresponding partner link
and variable to the flight process and to the travel package process. Similarly,
to measure the execution time of some process activities, the programmer had
to insert activities before and after each occurrence of the monitored activities,
in addition to the respective partner link and variables.

The data collection for billing aspect and the execution time measurement
aspect shown above modularize the workflow constructs (partners, variables,
and activities) that pertain to these crosscutting concerns and separate them
from the business logic of the travel package process and the flight process.

The collection of billing data/measurement of activity execution time func-
tionality is no longer intertwined with the process code of other concerns. The
logic for collecting data/measuring execution time is now explicit, and so is the
decision as to where and when to collect which data/measure activity execu-
tion time during the execution of the BPEL processes. Moreover, the workflow
process specifications of the travel package process and the flight process are no
longer tangled.

In addition, one could define aspects with different implementations of a
certain concern and weave the appropriate ones according to the context. Also,
the concerns that are modularized in the form of aspects can be plugged in and
out as needed.

To better see the advantages of AO4BPEL with respect to workflow change
modularization, recall the two versions of the travel package processes that were
presented in Listings 3.6 and 3.7 in Chapter 3.

The aspects AddCarRental and ReplacePartner show how AO4BPEL sup-
ports the modular expression of workflow changes. All workflow constructs
(partners, variables, and activities) that implement some workflow change are
encapsulated in an aspect module.

Expressing changes modularly with aspects makes them easy to understand.
The pointcut of the aspect specifies when and where the change should be
applied during the execution of the workflow processes. In addition, as the
AO4BPEL engine is based on the aspect-aware engine approach, it supports
change aspects as first-class runtime entities. Thus, change management be-
comes simpler. For instance, to undo a temporary change, one just has to
undeploy the corresponding aspect.

The dynamic composition mechanism of the AO4BPEL engine solves the
problem of dynamic change in BPEL. That is, ad-hoc workflow changes such as
the replacement of a partner service can be accommodated at runtime. Thus,
AO4BPEL improves the flexibility of BPEL processes significantly.

81

5.4 Implementation

A prototype implementation2 of AO4BPEL was developed on top of IBM’s
orchestration engine BPWS4J [104], the only engine that was available when
this PhD work started.

The implementation is based on the aspect-aware engine approach, i.e., the
interpreter of the BPWS4J engine was extended with additional checks for as-
pects at well-defined points in the execution of process activities. The aspect-
aware engine approach was chosen because it supports easily the dynamic com-
position of aspects and processes and also because it supports internal join
points (cf. Chapter 4).

5.4.1 Architecture of the AO4BPEL engine

aspect
files

 BPWS4J engine

BPEL
interpreter

process
deployment

tool

aspect
runtime

aspect
deployment

tool

 AO4BPEL Engine

process
files

Figure 5.1: Architecture of the AO4BPEL engine

The architecture of the AO4BPEL engine is shown at a high level in Fig-
ure 5.1. The BPWS4J engine is extended with two components: the aspect
deployment tool and the aspect runtime.

The aspect deployment tool is the user interface to the AO4BPEL implemen-
tation. This tool allows the deployment/undeployment of aspects and also the
listing of all currently deployed aspects. It is implemented as a Web application
based on Java Server Pages [64], in a similar way to the process deployment tool
of BPWS4J.

The process deployment tool of BPWS4J was extended with aspect visual-
ization support, so that it shows the aspects that affect each deployed process.
This feature allows AO4BPEL users to better understand and predict the be-
havior that results after the composition of aspects and processes.

The aspect runtime component is responsible for managing and executing
the aspects. This component builds a wrapper around the BPEL interpreter. It
intercepts the execution of each process activity at well-defined points and checks
whether there is an aspect with a pointcut that matches the current activity. If
such an aspect is found, the respective advice activity will be executed according
to the advice type.

2This implementation was presented in a formal demonstration at AOSD 2006 [37].

82

5.4.2 Composition mechanism

The composition mechanism of AO4BPEL has three major tasks. First, it ex-
tends the activity lifecycle of the BPEL engine with dynamic checks for aspects.
Second, it decides at all these checks whether there is a pointcut that matches
the current activity. Third, if a matching pointcut is found, the composition
mechanism ensures the execution of the respective advice.

Modification of the activity lifecycle

The activity lifecycle denotes the different states in which an activity can be dur-
ing its execution. The BPWS4J engine follows an activate-enable-run-complete
lifecycle [61] as shown in Figure 5.2.

In this lifecycle, an activity starts running (the running state) once two
things happen: The activity receives control from its enclosing activity (the
activate state) and its incoming links fire positively so that the join condition
evaluates to true. When a fault occurs, the activity enters the disabled state
and can be revived later. To support loops, an activity that is in the completed
state can be revived.

Figure 5.2 shows the points in the activity lifecycle where dynamic checks
for aspects are integrated. These checks depend on the advice types. For the
advice types before and around, checks are performed when the activity goes
from the state enabled to the state running. For the after advice, checks are
performed when the activity exits the state complete.

Figure 5.2 also shows the internal points during the execution of messaging
activities where additional checks are integrated. These checks affect not only
the BPEL engine but also the underlying SOAP engine.

Checks for the advice types before soapmessageout and around soapmes-
sageout are done after the generation of the outgoing SOAP message of the
current messaging activity. Checks for the advice types after soapmessagein
and around soapmessagein are done after receiving an incoming SOAP message
that matches the current messaging activity.

For the composition mechanism of AO4BPEL, the process meta model con-
structs of BPEL such as join conditions, transition conditions, and links are
irrelevant because the composition mechanism is embedded in the orchestra-
tion engine itself, as opposed to composition mechanisms that are based on the
process transformation approach such as the work presented in [26]. What mat-
ters for the composition mechanism of AO4BPEL is that an activity, which is
matched by a pointcut, is currently being executed.

Pointcut matching

At all points where checks for aspects are performed, the composition mecha-
nism has to decide whether there is a pointcut (and an associated advice) that
matches the current activity. The pointcut matching process in the AO4BPEL
engine consists of three steps.

In the first step, variable-oriented and partner-oriented pointcuts are trans-
formed into activity-oriented pointcuts. This step is necessary because the
pointcuts should match points in the execution of activities (and not partners
or variables).

83

default

activate

 enabled

running

complete

disabled
revive revive

disable

disable disable

disable

before/around
advice

after
 advice

SOAP request

send/receive

SOAP response

 running state
(messaging activities)

before/around
soapmessageout

after/around
soapmessagein

Figure 5.2: Advice weaving and the activity lifecycle

After that, the pointcut matcher proceeds with the second step and checks
whether one of the activity-oriented pointcut expressions matches the current
activity. Thereby, two implementation approaches are possible.

In the first approach, pointcut matching can be implemented by evaluating
the XPath pointcut expressions for each activity that is executed by the BPEL
engine. That is, the pointcut matcher retrieves all pointcut expressions that are
defined in the deployed aspects, and evaluates each of them against the XML
process document, in which the current activity is defined. Then, the pointcut
matcher compares the element name and the attributes of each matching XML
node with the type and attributes of the current activity. This approach requires
costly XPath evaluations of all pointcut expressions for each BPEL activity.

In the second approach, which is implemented by the AO4BPEL engine, a
fast match pass is used to improve performance. In this approach, pointcut
matching is done in two phases 2a and 2b.

In the phase 2a, the pointcut matcher evaluates pointcut expressions only
when a new process or aspect is deployed or undeployed. This evaluation,
which uses Xalan-J [6], operates on the XML process documents and returns
a set of matching XML nodes for each pointcut expression. These nodes are
comparable with the join point shadows in the AspectJ implementation [96].
For each pointcut, the meta-data of the returned activity nodes (e.g., activity
type, activity name, attribute names and their values) is stored in some internal
data structure.

In the phase 2b, the pointcut matcher compares the metadata of the cur-
rent activity with the meta-data stored in the internal data structure without
performing any costly XPath evaluations.

If the pointcut is a dynamic pointcut, i.e., it specifies an instance selection
condition, the pointcut matcher performs the third step of the pointcut match-
ing process and evaluates that condition against the current process instance.

84

This step is comparable with the dynamic tests (residues) in the AspectJ imple-
mentation [96]. If the pointcut does not specify an instance selection condition,
this third step is skipped.

Advice execution

In case a pointcut match is found for the current activity, the aspect runtime
has to execute the respective advice activity. If the current join point activity
is matched by more than one pointcut, the aspect runtime has to determine the
order in which the advice should be executed.

If the advice have different types, the aspect runtime executes them in the
order defined in Section 5.2.2. If the advice have the same type, the aspect
runtime executes them depending on the values of the order attributes of the
respective advice elements. If no order is defined, the aspect runtime executes
them according to their order of deployment: the first deployed aspect will be
executed first and so on.

Since the advice activity is a BPEL activity, the aspect runtime can delegate
the execution of that activity to the BPEL interpreter. Thereby, two steps are
necessary before the BPEL interpreter can execute the advice activity.

First, special AO4BPEL constructs need to be resolved. If the advice uses
context collection variables such as ThisJPInVariable, this construct should be
replaced by the name of the input variable of the join point activity. If the advice
uses some parts of the reflective variable ThisJPActivity, these parts should be
set to the corresponding reflective information of the join point activity.

For example, recall the logging aspect that was mentioned in Section 5.2.2.
The pointcut of this aspect selects two reply activities in the flight process and in
the travel package process. The advice of this aspect uses the reflective variable
ThisJPActivity to log the name of the join point activity.

<copy>
<from variable=”ThisJPActivity” part=”name”/>
<to variable =”logVar” part=”activityName”/>

</copy>

In this example, the aspect runtime should set the parts of the variable
ThisJPActivity differently depending on the current join point activity. That is
the part name will be set once to the name of the reply activity of the travel
package process and once to the name of the reply activity of the flight process.

The resolution of context collection constructs and reflective constructs is
implemented as follows: whenever the advice uses a context collection or reflec-
tion construct, the aspect runtime collects the context data of the current join
point (meta-data of the activity and its parent process, the input and output
variables used by the activity, etc). Then, the aspect runtime uses the collected
data to resolve the special constructs.

Second, aspect-local declarations for partners and variables are added to
the parent process of the current join point activity. In this way, the advice
activities that use the variables and partners that are defined in the process can
be executed by the BPEL engine as if they were activities of the process.

After these two steps, the aspect runtime delegates the execution of the
advice activity to the BPEL interpreter and coordinates that execution with
the process execution as follows.

85

• If the advice is a before (resp. before soapmessageout) or after advice
(resp. after soapmessageout), the process execution is suspended until
the advice activity completes. After that, the process proceeds with the
suspended activity.

• If the advice type is around (resp. around soapmessageout) and the advice
does not use the proceed activity, the process execution is suspended until
the advice activity completes. After that, the join point activity skips the
running state to avoid executing the join point activity and goes to the
complete state.

• If the advice type is around (or around soapmessageout) and the advice
uses the proceed activity, the process execution is suspended until the
completion of the child activities of the advice that are defined before the
proceed activity. Then, the join point activity executes. After that, the
child activities of the advice that are defined after the proceed activity
execute.

5.4.3 Performance

In the following, some performance measurements of the AO4BPEL engine are
presented. These measurements confirm two claims. First, the additional over-
head for aspect checks is negligible when compared with the process execution
time. Second, the dynamic composition based on the aspect-aware engine ap-
proach compares well to the static composition based on the process transfor-
mation approach.

Tests Engine Number of invokes

2 4 6

T1: No checks for aspects BPWS4J 367ms 657ms 951ms

T2: Checks without deploying an aspect AO4BPEL 373ms 672ms 971ms

Overhead for aspect checks 1.6% 2.2% 2.05%

T3: Advice embedded in the process BPWS4J 525ms 842ms 1111ms

T4: Advice defined in an aspect AO4BPEL 535ms 863ms 1135ms

Aspect machinery incl. checks 1.9% 2.4% 2.11%

Aspect machinery without checks 0.3% 0.2% 0.06%

Table 5.1: Performance measurements for the AO4BPEL engine

Overhead of the additional checks for aspects

Additional checks are needed during the execution of process activities to test
whether these activities are matched by the pointcut of some aspect. Clearly,
these checks induce some performance overhead. However, this overhead is
negligible when compared with the execution time of a messaging activity such
as invoke, which carries out a costly interaction with a partner over the network.

There are no standard benchmarks for BPEL. To measure the additional
overhead for aspects checks, two tests were done with three variants of the
travel package process (respectively with two, four, and six invoke activities).
The partner Web Services were deployed on the Internet. In each test, the travel

86

package process was called 50 times and the average time elapsed between the
creation of the process instance (as a result of a request message matching the
receive activity) and the termination of that instance was measured in millisec-
onds.

In the test T1, the three variants of the travel package process were deployed
on the original BPWS4J engine (without aspect support). In the test T2, these
variants were deployed on the AO4BPEL engine (with additional checks for
aspects), without deploying any aspects. The results of these two tests are
shown in the upper part of Table 5.1.

The overhead caused by the additional checks for aspects is the difference
between the process execution time in the test T2 and the process execution
time in the test T1. The measurements for these two tests confirm that this
overhead is negligible (around 2%) compared with the cost of interactions with
partner Web Services.

Overhead of aspect machinery

The dynamic composition of aspects and processes has several benefits such
as improving the adaptability of BPEL processes, providing more flexibility to
switch aspects on and off as needed, allowing an easier support of pointcuts
that depend on runtime data such as perspective-oriented and instance-based
pointcuts.

In addition to these benefits, the runtime overhead induced by the aspect-
aware engine approach is small and acceptable, when compared with the process
transformation approach. To confirm this claim, the runtime overhead of the as-
pect machinery in the AO4BPEL engine was measured by means of two further
tests.

In the test T3, which simulates static composition by the process transforma-
tion approach, the data collection for billing functionality (i.e., the partner link,
the variable, and the necessary activities to call the counting Web Service) was
directly integrated into the three variants of the travel package process. Then,
the resulting three process variants were deployed on the BPWS4J engine.

In the test T4, the data collection for billing functionality was defined in a
separate aspect that was deployed on the AO4BPEL engine. This aspect was
composed together with the three variants of the travel package process.

In both tests, the travel package process was called 50 times and the average
process execution time was measured as in the tests T1 and T2. The results of
the tests T3 and T4 are shown in the lower part of Table 5.1.

The runtime overhead caused by the aspect machinery is the difference be-
tween the process execution time in the test T4 and the process execution time
in the test T3. The measurements confirm that the runtime overhead induced
by the aspect machinery is small (less than 0.3%) compared with the cost of
interactions with partners. Moreover, this overhead decreases (from 0.3% to
0.06%) when the process contains more messaging activities.

87

5.5 Related Work

This section starts by comparing AO4BPEL and AspectJ. Then, two other
aspect-oriented extensions to BPEL are compared with AO4BPEL. After that,
some works on AOP in the context of Web Services and some research efforts
on adaptability in BPEL are presented.

5.5.1 AO4BPEL and AspectJ

AspectJ [118] is the most known and the most mature aspect-oriented program-
ming language to date. Like AspectJ, AO4BPEL has a join point model, a point-
cut language, and an advice language. Unlike the join point model of AspectJ,
which defines points in the execution of object-oriented Java programs such as
method calls and field reading/writing, the join point model of AO4BPEL se-
lects points in the execution of BPEL processes corresponding to the execution
of process activities.

In addition, the join point model of AO4BPEL supports internal join points,
which span the process level and the messaging level. This kind of join points
is specific to workflow languages, which incorporate a two-level programming
paradigm [125] (i.e., they separate the activity specification in the one level and
the activity implementation in the other level). There is no counterpart for
internal join points in AspectJ.

Similarly to the pointcut language of AspectJ, which provides pointcut des-
ignators to select, e.g., method calls and field reading/writing, the pointcut
language of AO4BPEL provides activity-oriented pointcuts. However, AspectJ
comes with a predefined set of pointcut designators, whereas AO4BPEL uses
XPath as pointcut language, which provides a calculus for building pointcuts
as needed. Moreover, AO4BPEL supports cross-layer pointcuts (correspond-
ing to the two-level programming paradigm) and perspective-oriented pointcuts
(corresponding to the workflow perspectives). These pointcuts do not have
counterparts in AspectJ.

The advice language of AspectJ is Java, whereas the advice language of
AO4BPEL is BPEL. Like AspectJ, AO4BPEL defines the advice types before,
after, and around. In addition, AO4BPEL defines further advice types such as
before soapmessageout and after soapmessagein.

5.5.2 Other aspect-oriented extensions to BPEL

In the following, two recent aspect-oriented extensions to BPEL [57, 26] will be
presented and compared with AO4BPEL.

In a position paper [56], Courbis and Finkelstein present a BPEL-specific
aspect language, which uses XPath as pointcut language and Java as advice
language. That work proposes using aspects to implement an extensible, con-
figurable, and adaptable BPEL engine, i.e., to extend and modify the engine’s
behavior, to select and replace Web Services, and to modularize crosscutting
concerns in the engine implementation such as profiling and debugging. The
first work on AO4BPEL [33] was presented at the same conference as the pro-
posal in [56].

In [57], Courbis and Finkelstein present their aspect-oriented extension to
BPEL, which uses XPath as pointcut language and BPEL as advice language,

88

like AO4BPEL. The purpose of that extension as stated by the authors is to
hot-fix and adapt workflows dynamically by transforming the abstract syntax
tree representation of the BPEL process at runtime, e.g., by adding or removing
activities to/from the process.

The work presented in [57] does not address the issues of crosscutting concern
modularity and change modularity. The language introduced in that paper is
more interceptor-based than aspect-oriented because the pointcut expressions
cannot span several processes. That is, if a crosscutting concern spans three
processes, three aspects are needed (respectively one for each process). Changes
and adaptations that span more than one BPEL process are not supported.

In [26], the most recent aspect-oriented workflow language is presented. That
language is called Padus. It has a logic-based pointcut language and it uses
BPEL as advice language. Pointcuts in Padus are written as constraints on the
type and properties of the allowed join points. Moreover, pointcut matching is
done by a Prolog engine.

Padus supports the modularization of crosscutting concerns, but it does not
address the problem of change modularization. This is probably due to the static
composition mechanism of Padus. Unlike AO4BPEL, which supports dynamic
composition, the implementation of Padus follows the static process transfor-
mation approach. Consequently, Padus aspects cannot be used for dynamic
adaptation.

The aspect-oriented extensions that are presented in [26, 57] support only
activity join points. The concept of internal join points does not exist in those
proposals, which is a major limitation. That is, these extensions are not suitable
for non-functional concerns such as security, reliable messaging, and transac-
tions. These concerns require support for defining cross-layer pointcuts because
Web Service middleware is based on WS-* specifications such as WS-Security
[136] and WS-ReliableMessaging [43], which define SOAP message extensions.

The pointcut languages of the works presented in [26, 57] do not support
the selection of cross-layer pointcuts and instance-based pointcuts. Moreover,
these pointcut languages lack support for perspective-oriented pointcuts such as
the data-oriented or participant-oriented pointcuts. Unlike AO4BPEL and the
extension presented in [57], which use XPath as pointcut language, Padus comes
with a predefined set of pointcut designators, such as invoking and replying.
Consequently, it is not possible to define new pointcut designators in Padus.

Moreover, the advice language presented in [57] does not provide any con-
text collection or reflection constructs. Padus provides some context collection
constructs. However, these constructs are not generic. That is, the advice in
Padus must reference the variables that are used by the join point activity by
their names to access the join point context. Consequently, the pointcut of a
Padus aspect can select only one activity or occurrences of the same activity
whenever the join point context is needed.

Besides, the works presented in [26, 57] propose an aspect-oriented extension
to BPEL without addressing the relationship between aspects, which add new
activities to the workflow processes, and fault handling, compensation handling,
and message correlation. In both proposals, the behavior of the system when a
fault occurs during the execution of the advice is unclear. Moreover, important
issues such as compensating the effects of the advice activity and routing the
messages that go to the advice are not addressed.

89

5.5.3 Work on AOP and Web Services

In the following, some works on Aspect-Oriented Programming in the context
of Web Services are presented.

WSML [184] is a client-side Web Service management layer that realizes
dynamic selection and integration of Web Services. It is implemented using the
aspect-oriented programming language JAsCo [172], which is an extension to
Java. WSML offers management functionalities such as service selection and
service redirection but it does not support Web Service composition, unlike
AO4BPEL.

The Contextual Aspect-Sensitive Services platform (CASS) [55] is a dis-
tributed aspect platform, which targets the encapsulation of specific crosscutting
concerns in service-oriented environments such as coordination, activity lifecycle
management, and context propagation. The pointcut and advice languages of
CASS are geared toward low-level message processing. The pointcut language
allows to define message patterns for the messages that should be intercepted.
The advice language allows to transform, to synchronize, to forward the in-
tercepted messages, etc. The advice operate at the level of the SOAP engine.
Unlike AO4BPEL, CASS does not introduce any aspect-oriented constructs to
the workflow process level.

In [146], Ortiz et al. use AspectJ aspects to modularize and add non-
functional properties to Java-based Web Services. In another work [145], Ortiz
and Leymann use WS-Policy [113] to describe the requirements of Web Services
in a declarative way. They mention the idea of generating AspectJ aspects to
enforce the policies without presenting an implementation. The use of aspects
in these two proposals allows for a more modular and reusable implementation
of the Java based Web Service. However, Web Service compositions that are
implemented in BPEL are not supported in these two works.

5.5.4 Work on flexibility in BPEL

AO4BPEL supports the dynamic composition of aspects and processes, which
increases the the flexibility and adaptability of BPEL processes. There are some
other works on flexibility in BPEL.

In [115], Karastoyanova et al. introduce BPEL extensions to increase the
flexibility of BPEL processes. The find and bind extension allows the explicit
selection at runtime of the Web Services that participate in a BPEL process
instance, e.g., based on some dynamic service selection policies. The evaluate
extension to the invoke activity enables port types to be modified at runtime.
These extensions are supported by a special BPEL engine.

In [77], Ezenwoye and Sadjadi introduce the TRAP/BPEL framework, which
adds autonomic behavior to existing BPEL processes. In that framework, a tool
generates an adapt-ready version of the BPEL process, which uses a generic
proxy for all interactions between the process and its partners. The proxy allows
the dynamic selection of partner Web Services at runtime. TRAP/BPEL does
not require any extensions to the BPEL language or to the BPEL engine.

In [76], Erradi et al. present a policy-based middleware, called Manage-
able and Adaptive Service Compositions (MASC). This middleware supports
the dynamic self-adaptation of Web Service compositions. According to a set
of Quality of Service policies that define non-functional requirements such as

90

SLAs, security, and persistence, MASC adapts the Web Service composition by
controlling and guiding the selection of partner Web Services, intercepting and
modifying SOAP messages, etc.

5.6 Conclusion

This chapter presented AO4BPEL and its implementation, which can be con-
sidered as a proof-of-concept for aspect-oriented workflow languages.

The AO4BPEL language incorporates many of the concepts of aspect-oriented
workflow languages that were presented in Chapter 4. In addition to present-
ing the join point model, the pointcut language, and the advice language of
AO4BPEL, this chapter explained the relationship of AO4BPEL aspects to ad-
vanced BPEL concepts such as fault handling and compensation handling.

Several examples illustrated how AO4BPEL aspects support the modular-
ization of crosscutting concerns and workflow changes by encapsulating all ac-
tivities, variables, and partners that implement them in separate modules.

This chapter also described the implementation of the AO4BPEL engine,
which extends the BPWS4J engine according to the aspect-aware engine ap-
proach. Since the AO4BPEL engine supports dynamic composition, AO4BPEL
aspects provide a suitable vehicle for adapting BPEL processes at runtime.

After introducing the AO4BPEL language in this chapter, the next chapters
will present two applications of AO4BPEL. In the first application [36, 41, 42],
AO4BPEL aspects are used to implement a process container that provides
support for security, reliable messaging, and transactions to BPEL processes. In
the second application [35], AO4BPEL aspects are used to implement business
rules in BPEL processes in a separate and modular way.

91

Part III

Applications of AO4BPEL

92

CHAPTER 6

A Process Container Framework for Middleware Support in
BPEL Processes

6.1 Introduction

Three years ago, IBM and Microsoft published a joint white paper on secure,
reliable, and transacted Web Services [79]. That paper explained how the non-
functional properties of Web Services can be supported by composing appro-
priate WS-* specifications such as WS-Security [136], WS-ReliableMessaging
[43], and WS-AtomicTransaction [137]. However, it did not address the specific
case of composite Web Services such as those implemented in BPEL, which is
addressed in this chapter1.

In fact, BPEL processes have several non-functional requirements. For ex-
ample, a BPEL programmer may need to specify that a certain invoke activity
should be executed with confidentiality support (i.e., the corresponding SOAP
message should be encrypted) or that a sequence activity should be executed as
an atomic transaction. Supporting the non-functional requirements is essential
to enable Web Service based production workflows [126] with BPEL. These are
workflows that define not only the functional logic, but also the non-functional
properties that are needed to integrate distributed and heterogeneous applica-
tions [174].

When implementing a Web Service in BPEL, the programmer looks at the
Web Service from an internal implementation perspective, i.e., she sees the pro-
cess definition (the BPEL file) and not only the interface definition (the WSDL
file). WS-* specifications such as WS-Security look at the Web Service from an
external perspective and do not make any assumptions about its implementa-
tion. They consider the Web Service as a black-box that consumes and generates
SOAP messages as defined in its WSDL interface.

1Parts of this chapter were published in the paper Reliable, Secure, and Transacted Web
Service Compositions with AO4BPEL, ECOWS 2006 [41].

93

The increased visibility that BPEL programmers have from their internal
implementation perspective gives rise to several non-functional requirements,
which are not addressed by WS-* specifications. These new requirements are
called process-level requirements, as opposed to messaging-level requirements.

Messaging-level requirements correspond to messaging activities, e.g., send-
ing the message of a reply activity with exactly-once semantics. They can be
supported to a large extent by using implementations of WS-* specifications.
The enforcement of these non-functional requirements can be done outside and
independently of the BPEL engine. Such an approach does not work for process-
level requirements, which require knowledge about the process structure, BPEL
semantics, and the process execution state.

This chapter illustrates the non-functional requirements of BPEL processes
with respect to security, reliable messaging, and transactions using a banking
scenario. Then, it presents a survey on the support for these requirements in
several current BPEL implementations. In this survey, two aspects are consid-
ered: the specification and the enforcement of non-functional requirements.

The survey reveals that only a few recent BPEL engines [52, 58, 169] provide
support for the expression and enforcement of messaging-level requirements.
Process-level requirements such as interacting with a partner using a secure
conversation and multi-party ordered message delivery are not supported in all
currently available commercial and Open Source BPEL engines.

To solve the problem of the lacking support for non-functional requirements
in current BPEL engines, a container-based framework is proposed. This frame-
work is inspired by enterprise component models such as Enterprise Java Beans
(EJB) [65]. In this framework, the non-functional requirements are specified
declaratively using an XML-based deployment descriptor and they are enforced
by a process container, which intercepts the execution of the process activities
at well-defined points and plugs in calls to dedicated middleware services.

The remainder of this chapter is organized as follows. In Section 6.2, the non-
functional requirements of BPEL processes w.r.t. security, reliable messaging,
and transactions are illustrated using a bank transfer scenario. Section 6.3
studies the support for these non-functional requirements in some current BPEL
engines. Section 6.4 presents the process container framework. Section 6.5
concludes this chapter.

6.2 Non-functional requirements in BPEL processes

This section introduces an online banking scenario, which shows the non-functional
requirements of BPEL processes w.r.t. security, reliable messaging, and trans-
actions in a more realistic way than the travel agency scenario.

In the banking scenario, a customer needs to perform a transfer of money.
She first accesses the Web site of her bank (called mybank) and logs in to the
online banking application before proceeding with a bank transfer. After the
authorization step, the customer fills in the necessary data for the transfer,
which includes the account number of the receiver, the code of the receiver’s
bank, and the amount of the transfer. When the customer confirms the transfer,
a request is sent and queued at mybank’s Web server, which later calls the
operation transfer on a Web Service that runs on a back-end server to complete
the transfer. The operations login and transfer are implemented by the BPEL

94

process shown in Listing 6.1. To log in the customer, this process invokes an
authorization Web Service (lines 4 and 26–28). To carry out a transfer, this
process invokes the Web Service of the customer’s bank subsidiary (lines 5 and
44–46) and the Web Service of the receiver’s bank (lines 6 and 47–49).

6.2.1 Classification

BPEL processes such as the transfer process have several non-functional require-
ments, which can differentiated into messaging-level requirements (the SOAP
level) and process-level requirements (the BPEL level).

Messaging-level requirements are associated with messaging activities2, which
have corresponding operations and messages in the WSDL interface definition.
Given appropriate means to specify messaging-level requirements, one could use
implementations of WS-* specifications to enforce them. Thereby, the enforce-
ment of these requirements can be done fully outside the BPEL engine, e.g., by
using message interceptors in the SOAP engine.

Process-level requirements are associated with non-messaging activities such
as the structured activities sequence and flow. The latter do not show up in
the WSDL interface and cannot be directly associated with SOAP messages.
To enforce process-level requirements, it is necessary to have knowledge about
the process structure, BPEL semantics, and the process execution state. Con-
sequently, process-level requirements cannot be enforced at the messaging layer
independently of the process layer; they rather require the coordination of both
layers.

In the following, the non-functional requirements of BPEL processes with
respect to security, reliable messaging, and transactions will be presented using
the classification schema proposed so far. The point that the following discussion
intends to make is that security for BPEL is more than SOAP message security
[36], reliable messaging for BPEL is more than reliable SOAP messaging [42],
and transactions for BPEL [174] are also more than Web Service transactions.

6.2.2 Security requirements

In 2002, IBM and Microsoft stated in a joint security white paper [105] that
“security has been a key factor that was holding companies back from adopting
Web Services”. In 2006, the Web Services landscape has changed especially after
the emergence of several specifications for Web Service security such as WS-
Security [136], WS-Trust [4], and WS-SecureConversation [88]. Whilst these
specifications address the general case of Web Services, they do not consider
the specific case of Web Service compositions implemented in BPEL.

In fact, BPEL processes such as the bank transfer process have several secu-
rity requirements that range from messaging-level requirements such as message
confidentiality and message integrity to process-level requirements such as se-
cure conversations and federation.

Messaging-level requirements

The messaging-level security requirements are driven by various security threats
that arise when the BPEL process interacts with its partners [36]. For example,

2Messaging activities include also the pick activity with onMessage branch.

1 <process name=”BankTransfer”>
2 <partnerLinks>
3 <partnerLink name=”customer” partnerLinkType=”customerSLT”/>
4 <partnerLink name=”authorization” partnerLinkType=”authorizationSLT”/>
5 <partnerLink name=”subsidary” partnerLinkType=”subSLT”/>
6 <partnerLink name=”receiverbank” partnerLinkType=”tobankSLT”/>
7 </partnerLinks>
8 <variables>
9 <variable name=”loginrequest” messageType=”loginIn”/>

10 <variable name=”loginresponse” messageType=”loginOut”/>
11 <variable name=”checkloginrequest” messageType=”checkloginIn”/>
12 <variable name=”checkloginresponse” messageType=”checkloginOut”/>
13 <variable name=”transferrequest” messageType=”transferIn”/>
14 <variable name=”transferresponse” messageType=”transferOut”/>
15 <variable name=”creditrequest” messageType=”creditIn”/>
16 <variable name=”creditresponse” messageType=”creditOut”/>
17 <variable name=”debitrequest” messageType=”debitIn”/>
18 <variable name=”debitresponse” messageType=”debitOut”/>
19 </variables>
20 <sequence name=”MainSequence”>
21 <sequence name=”LoginSequence”>
22 <receive name=”receiveLogin” partner=”customer”
23 portType=”transferServicePT” operation=”login”
24 variable =”loginrequest” createInstance = ”yes”/>
25 <assign> ... </assign>
26 <invoke name=”invokeChekLogin” partner=”authorization”
27 portType=”authorizationPT” operation=”checkLoginData”
28 inputVariable =”checkloginrequest” outputVariable=”checkloginresponse”/>
29 <switch>
30 <case condition=”getVariableData(’checkloginresponse ’,’ success’)= false ”>
31 <assign>...</assign>
32 <reply partner=”customer” portType=”transferServicePT”
33 operation=”login” variable =”loginresponse”/>
34 <terminate/>
35 </case>
36 </switch>
37 </sequence>
38 <sequence name=”TransferSequence”>
39 <receive name=”receiveTransfer” partner=”customer”
40 portType=”transferServicePT” operation=”transfer”
41 variable =”clientrequest” createInstance = ”no”/>
42 <assign> ... </assign>
43 <sequence name=”debit credit”>
44 <invoke name=”invokeDebit” partner=”subsidary”
45 portType=”subsidaryBankService” operation=”debit”
46 inputVariable =”debitrequest” outputVariable=”debitresponse”/>
47 <invoke name=”invokeCredit” partner=”tobank”
48 portType=”toBankService” operation=”credit”
49 inputVariable =”creditrequest” outputVariable=”creditresponse”/>
50 </sequence>
51 <assign>
52 ...
53 </assign>
54 <reply partner=”customer” portType=”transferServicePT”
55 operation=”transfer” variable =”clientresponse”/>
56 </sequence>
57 </sequence>
58 </process>

Listing 6.1: A bank transfer process in BPEL

96

the BPEL programmer may need to specify the following requirements on the
SOAP messages of the invoke activities (lines 44–49) that call the operations
credit and debit in the bank transfer process:

• Integrity: SOAP messages should not be tampered with on their way to
the partners.

• Confidentiality: SOAP messages with sensitive data such as account
information should not be seen by other parties.

• Authentication: SOAP messages that are exchanged between the bank-
ing process and its partners should carry appropriate credentials to prove
the sender’s identity.

• Non-repudiation: A client that invokes an operation on a BPEL process
such as the transfer process cannot deny having done so or claim that
someone else misused his/her identity.

• Replay attacks: A request message that was captured by a malicious
third party and then resent later should be recognized as such.

Given appropriate means to express the messaging-level security require-
ments mentioned above, these requirements can be enforced by using an im-
plementation of WS-Security [136]. This specification provides mechanisms for
signing and encrypting SOAP messages, adding authentication tokens and time
stamps to messages, etc.

Process-level requirements

Several process-level requirements arise when addressing advanced security is-
sues that go beyond SOAP message security such as secure conversations, fed-
eration, and trust. Unlike WSDL, which does not provide any construct for
grouping messages or operations, structured BPEL activities such as sequence
and flow can enclose messaging activities and provide a context for their execu-
tion. Some structured activities may have secure conversation requirements as
it is the case in the banking scenario.

In fact, the process shown in Listing 6.1 integrates mybank with exactly one
partner bank (let us say bank A). Similar BPEL processes are needed to inte-
grate mybank with other banks (banks B, C, etc) in order to perform transfers
that involve those partners. Assume that such processes exist and that each of
them provides an operation transferToX, whereby X is the name of the part-
ner bank (e.g, transferToA and transferToB). Further, assume that the Web
Service of myBank collects the transfer requests and sorts them according to
the receiver’s bank. Then, it calls the operation transferToX for all transfers
that involve a given partner bank X. This functionality can be implemented
using a BPEL process router, which uses different while activities to invoke the
operation transferToX multiple times for each partner bank X. In this scenario,
there are several interactions between the router process and the Web Service
of each partner bank.

When using WS-Security to secure these interactions, each message must
contain all security artifacts that are used to secure it. From a performance
point of view, the single message security model of WS-Security is inefficient

97

when many messages are exchanged between two parties because it results in
high overheads for message processing (i.e., for securing or verifying the message)
and for message transmission (because the message gets larger).

In scenarios like the one mentioned above, it is better to set up a secu-
rity context at the beginning of a session of interactions with a given partner
(so-called conversation) and then use that context for securing the subsequent
interactions with that partner.

The WS-SecureConversation specification [88] defines how a security context
can be established between two parties. In addition, it specifies how this context
can be used, e.g., to sign or to encrypt SOAP messages. If the Web Services of
mybank’s partners support WS-SecureConversation, the overhead for message
processing and for message transmission can be reduced significantly, which
improves the overall performance of the BPEL process.

The secure conversation requirements are process-level requirements that
apply to structured activities that contain nested messaging activities. The
component that enforces these process-level requirements needs to know when
the execution of the structured activity starts. At this point, that component
should establish a security context. Then, the enforcement component should
use the created context to secure each messaging activity that is nested in the
structured activity. When the execution of the structured activity completes,
the security context should be destroyed.

6.2.3 Reliable messaging requirements

The execution of a messaging activity results in exchanging one or more SOAP
messages with a partner Web Service. When these messages are sent via unre-
liable channels several risks could arise on the transport path, such as message
loss, message duplication, and message reordering.

In the following, the reliable messaging requirements of the messaging activ-
ities invoke, reply, and receive are studied. Moreover, several combinations of
messaging activities and structured activities are considered.

Messaging-level requirements

Messaging activities may require a particular delivery assurance such as exactly-
once, at-most-once, and at-least-once. Without support for these assurances, the
SOAP messages corresponding to messaging activities may be lost or delivered
multiple times to the partner.

For example, in the bank transfer scenario, it is not acceptable that the
SOAP messages corresponding to the invoke activities that call the operations
credit or debit get lost. If the response message of the invoke activity that
calls the operation credit is lost, the process will block waiting for it and the
transfer will not be completed. Even if the process terminates after some time
because of a timeout for instance, one would have to undo the effect of the
previously completed invoke that called the operation debit. In addition, it is not
acceptable that the request message of these invoke activities is received more
than once by the partner because in such a case, the corresponding operation
(credit or debit) will be called more than once.

WS-ReliableMessaging (WS-RM for short) [43] and WS-Reliability [135] are
the currently available specifications for reliable messaging in the context of

98

Web Services. Both specifications provide the delivery assurances at-least-once,
at-most-once, exactly-once, and in-order.

Given appropriate means to express reliable messaging requirements, the
messaging-level requirements mentioned so far can be enforced by using an im-
plementation of WS-RM or WS-Reliability. In this chapter, WS-RM will be
used to support reliable messaging in BPEL because WS-RM is less complex
than WS-Reliability [46]. Moreover, WS-RM can be composed with other Web
Service specifications such as WS-Addressing and WS-Policy.

Process-level requirements

Structured BPEL activities such as sequence, flow, and while define the execu-
tion order of their nested messaging activities. The SOAP messages of these
nested messaging activities should be delivered to the respective partners in the
same order as defined in the process.

The two invoke activities that call the operations debit and credit in the
transfer process (lines 44 and 47) are nested in a sequence activity (lines 43–
50). As both activities define synchronous request-response interactions, there
is no reordering risk, i.e., the second invoke (line 47) will be executed only after
the first invoke (line 44) completes. The latter completes only after getting
a response message from the partner subsidiary, i.e., that partner must have
already received the corresponding request message.

The process-level requirement of ordered message delivery makes sense for
one-way interactions via the messaging activities receive, reply, and invoke as
explained in the following.

For example, consider the two receive activities in the bank transfer process.
The first receive is for the login operation (lines 22–24) and the second is for
the transfer operation (lines 39–41). In lack of an assurance about the ordered
delivery of SOAP messages from the client to the transfer process it is possible
that the client sends the messages for calling the operations login and transfer
in the correct order but for some reason the second message is received at the
process side before the first message. In such a case, the process will not be
executed properly because the second SOAP message does not match the receive
activity for the login operation. Moreover, since the receive for the operation
transfer is not yet active, it will not consume the second SOAP message, which
will be probably discarded by the BPEL engine. When the message correspond-
ing to the first receive finally arrives, the receive for the operation login executes
but the receive for the operation transfer will block waiting indefinitely. Conse-
quently, the client would not get any response from the process although it has
called the operations login and transfer in the correct order.

The requirement of ordered message delivery applies also to reply activities.
For instance, consider two reply activities that interact with two different part-
ners Pa and Pb and that are nested inside a sequence. In certain scenarios, the
SOAP message of the first activity should be received by Pa before the SOAP
message of the second activity is received by Pb.

Ordered message delivery is also important for one-way invoke activities
that are nested in a structured activity. Such invoke activities are used for one-
way interactions and for asynchronous invocations (i.e., the request message is
sent by an invoke and the response message is received by a receive). One-
way invoke activities are not blocking, i.e, they just send out the message and

99

complete. Like for receive and reply, message reordering should also be avoided
when one-way invoke activities are nested inside a structured activity.

The ordered message delivery requirement is a process-level requirement,
which is associated with structured activities that contain nested messaging
activities. The order of message delivery to the different partners should be the
same as the order of activity execution (which is defined in the BPEL process).
Two cases can be distinguished: either all messaging activities interact with the
same partner or they interact with different partners.

WS-Reliability and WS-RM support ordered message delivery only in the
first case, i.e., when the messaging activities talk to the same partner (reliable
messaging between two endpoints). The in-order assurance provided by these
specifications guarantees that calls to the operations of the same Web Service are
delivered in the correct order. Both specifications do not support multi-party
reliable messaging [42], which is required when the messaging activities talk to
different partners (reliable messaging between more than two end points).

6.2.4 Transaction requirements

There are two kinds of transactions in the context of Web Services: atomic trans-
actions [137], which are short-running distributed transactions with the tradi-
tional ACID properties, and business activities [138], which are long-running
compensation-based transactions with relaxed isolation.

When studying the transactional requirements of BPEL activities two cases
can be differentiated. In the first case, the BPEL process is the initiator of the
transaction, i.e., the process side controls the start and the commitment of the
transaction, which contains at least an invocation of a partner Web Service. In
the second case, the composite Web Service that is implemented by the BPEL
process is a participant in a transaction that is controlled by another party. The
following discussion will focus on the first case because the second case is not
specific to the Web Services that are implemented in BPEL.

Messaging-level requirements

Messaging activities may have transactional requirements. For example, it may
be necessary for the execution of an invoke or a reply to create a new atomic
transaction or to use an existing transaction. Given appropriate means to ex-
press transactional requirements of messaging activities, these requirements can
be enforced by using an implementation of WS-AtomicTransaction [137] or WS-
BusinessActivity [138].

Process-level requirements

Structured activities are more interesting with respect to transactions than indi-
vidual messaging activities because structured activities provide means to group
their child activities into a logical unit of work. Defining a structured activity
as transactional means that the transaction starts when the activity starts and
terminates when the activity completes. All messaging activities that are nested
in the structured activity participate with the transaction.

Moreover, it should be possible to flexibly define whether the transaction
associated with the structured activity is an atomic transaction or a business

100

activity. This depends on the application requirements and the deployment set-
ting of the process and the partner Web Services. For example, the sequence ac-
tivity debit credit of the bank transfer process should be executed as an atomic
transaction to ensure strict isolation. This activity requires that either both
invoke activities succeed or none of them. If one invoke is executed success-
fully and the other invoke fails, the resulting state would be inconsistent. To
avoid such inconsistency, the transaction associated with the sequence activity
debit credit must be rolled back in case of a fault.

In BPEL, there is no support for atomic transactions and only a local support
for long-running transactions through the use of compensation handlers. A
compensation handler can be added to a named scope activity. This handler
can be invoked explicitly from a fault handler or from another compensation
handler using the compensate activity to reverse the already completed activities
that should be undone. The default fault handler of a scope calls implicitly the
compensation handlers of all nested scopes in the reverse order of completion.

The compensation handling mechanism of BPEL does not replace the long-
running transactions provided by WS-BusinessActivity [138]. Business activities
are a more powerful concept for several reasons. First, with WS-BusinessActivity
it is possible to model more complex transactions. Second, implementing the
compensation logic in BPEL is the task of the BPEL programmer, whereas in
WS-BusinessActivity, each Web Service just knows how to compensate once it
receives the compensate message from the coordinator. Third, all participants
of a transaction are predefined in BPEL, whereas the list of participants in
WS-BA is dynamic as participants can join and leave the transaction flexibly.

In the context of transactional activities, it is important that the process
and the partner Web Services decide together on the outcome of the transac-
tion (external coordination), and not only the process (internal coordination).
Currently, BPEL supports only the internal coordination of long-running trans-
actions through the use of compensation handlers.

Internal coordination, in which the BPEL process decides locally on the
outcome of the transaction, is not sufficient for reliable distributed transactions
because a fault may occur inside a partner Web Service without being signaled
to the BPEL process. This problem can be solved by using external coordi-
nation, in which all partners agree on the outcome of the transaction. WS-
AtomicTransaction [137] and WS-BusinessActivity [138] can be used to support
external coordination in BPEL.

6.3 Support for Non-functional Requirements in Current
Engines

The problem of non-functional requirements in BPEL encompasses the specifi-
cation and the enforcement of those requirements.

On the one hand, BPEL 1.1 and WS-BPEL do not provide any constructs
for supporting non-functional requirements. Both focus only on the functional
specification of a Web Service composition and do not provide any means for
specifying non-functional requirements. This is not a limitation of BPEL, which
leaves out non-functional issues for several good reasons such as language sim-
plicity and separation of concerns.

101

On the other hand, it is widely assumed that non-functional requirements are
deployment issues that should be addressed by the BPEL engine somehow. This
section will show however that current BPEL engines support only messaging-
level requirements.

First, this section will survey the support for security, reliable messaging,
and transactions in several current BPEL engines. Then, it will group these
engines into three approaches to non-functional requirements and discuss the
limitations of each.

6.3.1 Survey

When this work started at the beginning of 2004, there was no support for non-
functional requirements in the BPEL engines available at that time. In 2006, the
author conducted a survey of non-functional requirements support in more than
17 representative BPEL implementations. The inspected implementations are
provided by the research community, the Open Source community, and industry.
The results of this survey are presented in Tables 6.1, 6.2, and 6.3.

BPEL Engine Support for Security
Active BPEL 2.0 None, but messaging-level require-

ments can be supported with cus-
tom handlers

Cape Clear Orchestrator Messaging-level requirements using
WS-Security

Bexee - BPEL Execution Engine None, but supporting messaging-
level requirements possible through
Axis handlers

Intalio BPMS Messaging-level requirements with
WS-Security

IBM BPWS4J 2.1 None
IBM Research Colombo Messaging-level requirements using

policy attachment and WS-Security
IBM WebSphere Process Server 6.0 Messaging-level requirements using

WebSphere ESB (WS-Security)
Microsoft Biztalk Messaging-level requirements using

send & receive pipelines (WS-
Security)

OpenLink Virtuoso Universal Server
3.0

Messaging-level requirements using
WS-Security and WS-Trust

OpenStorm Service Orchestrator Messaging-level requirements using
WS-Security and IBM MQ Series

Oracle BPEL Process Manager 10.1 Messaging-level requirements using
WS-Security

ParaSoft BPEL Maestro None
SeeBeyond ICAN Suite Messaging-level requirements using

WS-Security

Table 6.1: Security support in current BPEL engines

102

BPEL Engine Support for RM
Active BPEL 2.0 None, planned for next release
Cape Clear Orchestrator 6.5 exactly-once at the partner link level

using WS-RM
Bexee - BPEL Execution Engine None
Intalio BPMS Messaging-level requirements using

WS-RM
IBM BPWS4J 2.1 None
IBM Research Colombo Messaging-level requirements using

policy attachment and WS-RM
IBM WebSphere Process Server 6.0 exactly-once using JMS
Microsoft Biztalk Messaging-level requirements using

a proprietary protocol
OpenLink Virtuoso Universal Server
3.0

exactly-once and in-order at the
level of partner links using WS-RM

OpenStorm Service Orchestrator Not documented
Oracle BPEL Process Manager 10.1 None
ParaSoft BPEL Maestro Support for exactly-once using JMS
SeeBeyond ICAN Suite Not documented

Table 6.2: Reliable messaging support in current BPEL engines

BPEL Engine Support for Transactions
Active BPEL 2.0 None
Cape Clear Orchestrator 6.5 None
Bexee - BPEL Execution Engine None
Intalio BPMS Messaging-level requirements using

WS-AT
IBM BPWS4J 2.1 None
IBM Research Colombo Messaging-level requirements using

policy attachment and WS-AT
IBM WebSphere Process Server 6.0 Transactional scope activities using

language extensions
Microsoft Biztalk Transactional scope activities
OpenLink Virtuoso Universal Server
3.0

Not documented

OpenStorm Service Orchestrator Not documented
Oracle BPEL Process Manager 10.1 None
ParaSoft BPEL Maestro Messaging-level requirements using

WS-AT and WS-BA
SeeBeyond ICAN Suite Not documented

Table 6.3: Transaction support in current BPEL engines

103

In addition to the engines shown in these tables, other engines were examined
such as Agila BPEL [5], Digite Enterprise BPM [70], Lombardi Teamworks [168],
and SEEBURGER Business Integration Server [166]. However, the support for
security, reliable messaging, and transactions is these engines was and is still
undocumented.

The survey shows that only some BPEL engines support the messaging-level
non-functional requirements. Moreover, none of these implementations support
secure conversations and multi-party ordered message delivery. Transactional
structured activities are supported only in IBM WebSphere Process Server and
Microsoft Biztalk Server.

6.3.2 Classification

The BPEL engines that support messaging-level non-functional requirements
can be grouped according to three different approaches to requirements specifi-
cation: using policies, using partner links, and using language extensions.

Using policies

BPEL engines such as Colombo [58] and Oracle BPEL Process Manager [143]
use policies to define the non-functional properties of Web Service interactions.

Colombo Colombo [58] is a light-weight platform for developing, deploying,
and executing service-oriented applications. It was developed at IBM Research.
Colombo supports transactional, reliable, and secure Web Service interactions.
It uses WS-Policy [113] to specify the non-functional properties of messaging
activities declaratively.

The unit of development and deployment in Colombo is called servicelet. In
the case of a BPEL process, the servicelet contains the BPEL file, the WSDL file
of the composite Web Service, and the WSDL files of the partner Web Services.
In addition, the servicelet may contain policy files that are defined in WS-Policy.

In Colombo, the requirements of messaging activities are expressed indirectly
by attaching WS-Policy policies to the partner WSDL file, which is packaged
into the servicelet jar file. Policies are attached to the WSDL using the in-
ternal attachment mechanism of WS-PolicyAttachment [45], i.e., the attribute
wsp:policyRef is used as extensibility attribute in WSDL elements such as op-
eration and binding. For instance, to express that the invoke activity that calls
the operation credit requires confidentiality support, one could attach a secu-
rity policy to the operation debit that is defined in the WSDL of the partner
subsidary.

When a servicelet is deployed, the policy manager component of Colombo
interprets the policies and sets up a handler chain for each incoming or outgoing
message to enforce them. This chain may contain WS-* based handlers for
security, reliable messaging, transactions, and persistence.

Oracle BPEL Process Manager To secure Web Service interactions, Or-
acle provides a tool called Oracle Web Service Manager (WSM) [141]. The
WSM platform consists of three components: the policy manager, the message
interceptors, and the monitor.

104

The policy manager is a graphical browser-based tool that allows adminis-
trators to define security policies for a Web Service. These policies will be linked
together into a policy pipeline that is attached to one or more Web Services.
Unlike Colombo, the security policies of the WSM are not based on WS-Policy.

The interceptors are components that intercept messages and enforce the
security policies. The policy manager sends periodically updates of the policy
pipelines to the interceptors.

When the interceptors enforce policies on messages, they collect statistical
information that is sent to the monitor, which is a Web-based tool for monitoring
service availability, service level agreements, etc.

Oracle BPEL Process Manager [143] is Oracle’s implementation of BPEL.
When used with Oracle Web Service Manager, Oracle BPEL Process Manager
provides authentication, encryption, and signature support for both outbound
security (i.e., invoking secure partner Web Services) and inbound security (se-
curing BPEL processes) [144]. Moreover, Oracle BPEL Process Manager allows
processes to access and manipulate the headers of SOAP messages, which is
necessary for authorization.

<assign>
<copy>

<from>
<EndpointReference
xmlns=”http://schemas.xmlsoap.org/ws/2003/03/addressing”>

<Address>http://securehost/myService</Address>
<ReferenceProperties>

<wsOptions>
<addressing version=”http://schemas.xmlsoap.org...”/>
<delivery>
<in type=”ExactlyOnce” />
<out type=”InOrder” />

</delivery>
</wsOptions>

</ReferenceProperties>
</EndpointReference>

</from>
<to partnerLink= ”mypartner”/>

</copy>
</assign>

Listing 6.2: Configuring a partner link in Virtuoso

Using partner links

In BPEL implementations such as OpenLink Virtuoso [169] and Cape Clear
Orchestrator [52], messaging-level requirements are expressed at the level of
partner links.

OpenLink Virtuoso OpenLink Virtuoso Universal Server [169] is a BPEL
engine that allows the deployer to configure various properties of a partner link
such as reliable messaging and security. For example, one could specify that

105

all interactions with some partner should be executed with the exactly-once
assurance or that calls to some other partner must be encrypted or signed.

OpenLink Virtuoso allows to define the reliable messaging properties of some
partner directly in the BPEL process code using the WSOptions element as part
of an endpoint reference assignment. Listing 6.2 shows an assign activity, which
sets the endpoint of the partner mypartner. The delivery element specifies the
reliable messaging requirements for interactions with that partner. To enforce
the non-functional properties of partner links, Virtuoso uses implementations of
WS-Security and WS-RM.

Cape Clear Cape Clear Orchestrator [52] allows users to select partner links
and graphically configure their security and reliable messaging properties. To
enforce the non-functional properties of partner links, Cape Clear relies on the
Cape Clear Enterprise Service Bus [51].

The aim of an Enterprise Service Bus (ESB) is to integrate the applications
and data of some enterprise. The ESB provides native support for all relevant
XML and Web Service standards. That is, the messages sent via the ESB can
be secured according to WS-Security or be sent in a reliable way as specified
in WS-RM. Moreover, the ESB provides extended message transformation and
routing capabilities in addition to a variety of adapters for integrating legacy
applications.

Several other BPEL engines use an underlying ESB to enforce the non-
functional requirements of Web Service interactions. For example, the Web-
Sphere Process Server [103] relies on the WebSphere Enterprise Server Bus [101]
to support reliable and secure partner interactions according to WS-Security and
WS-RM.

Using language extensions

A third approach to the specification of non-functional requirements in BPEL
processes is based on language extensions. In the following, two BPEL exten-
sions for transaction support are presented.

Choreology defined several BPEL extensions for supporting business trans-
actions in a proposal to the WS-BPEL standardization committee [82]. In that
proposal, a new element businessTransaction is used to create or terminate
transactions, BPEL variables are used to hold coordination contexts and par-
ticipant identifiers, and messaging activities are extended with two attributes
businessTransactionContext and businessTransactionParticipant for the propa-
gation of business transactions.

The WebSphere Integration Developer allows the process modeler to graphi-
cally specify the transactional properties of the messaging activities such as com-
mit before, commit after, participate, require own, etc. The process definition
of such transactional processes contains several proprietary extensions having
the prefix wpc, as shown in Listing 6.3. The transactionBehavior attribute de-
fines the transactional behavior of the invoke activity. The WebSphere Process
Server interprets these proprietary extensions and enforces the messaging-level
transactional requirements accordingly.

106

<process xmlns:bpws=”http://schemas.xmlsoap.org/ws/2004/03/business−process/”
xmlns:wpc=”http://www.ibm.com/xmlns/prod/websphere/business−process/”>
...

<sequence name=”HiddenSequence” wpc:id=”1073741827”>
<receive createInstance =”yes” name=”Receive” operation=”op1”

partnerLink=”TransferProcess” portType=”TransferPT” >
<wpc:output>
<wpc:parameter name=”input1” variable=”Input1”/>

</wpc:output>
</receive>
<invoke inputVariable=”debitRequest” name=”Debit” operation=”debit”

outputVariable=”debitReturn” partnerLink=”subsidaryBank”
portType=”CommerzBankWS” wpc:transactionalBehavior=”participates”/>

<invoke inputVariable=”creditRequest” name=”Credit” operation=”credit”
outputVariable=”creditReturn” partnerLink=”toBank”
portType=”DeutscheBankWS” wpc:transactionalBehavior=”participates”/>
<wpc:adminTask name=”tel:TransferProcessTask1”/>

</invoke>
<reply operation=”op1” partnerLink=”TransferProcess” portType=”TransferPT”>
<wpc:input>
<wpc:parameter name=”output1” variable=”Input1”/>

</wpc:input>
</reply>
</sequence>

</process>

Listing 6.3: A BPEL process with transactional extensions

6.3.3 Discussion

In the following, the shortcomings of the three approaches that were mentioned
above are discussed with respect to requirement specification and requirement
enforcement.

With respect to requirement specification, the BPEL implementations that
were presented support to a large extent the expression of messaging-level re-
quirements but they do that in a non-intuitive way.

Approaches that use policies such as Colombo and Oracle Web Service Man-
ager do not allow to define the non-functional requirements directly on the BPEL
activities. Instead, one has to define the requirements on the WSDL of partner
Web Services in Colombo or on the partner Web Service in Oracle Web Service
Manager. In addition, WSDL-based approaches such as Colombo do not allow
to differentiate two messaging activities with the same partner link, port type,
and operation attributes.

This problem of granularity also exists in approaches that use partner links to
express non-functional requirements. That is, messaging activities that interact
with the same partner cannot have different properties. A more straight-forward
and fine-grained mechanism to express the non-functional requirements of BPEL
activities is needed.

Approaches that introduce BPEL extensions to specify non-functional re-
quirements break the portability of BPEL. In fact, process specifications that

107

contain proprietary extensions become dependent on a specific BPEL engine
and cannot be interpreted by other BPEL engines. In addition, as said earlier,
extending BPEL with new constructs increases the language complexity and
it is also against the principle of separation of concerns. For this reason, the
proposal of Choreology [82] was rejected by the WS-BPEL technical committee.

In the context of requirement specification, it is important to separate the
specification of the non-functional requirements from the process definition. By
doing so, the same BPEL process can be deployed several times on different
engines with different requirements. For example, in one deployment the BPEL
process could use partner Web Services that run inside the organization. In
such a case, security might not be an issue. In another deployment the same
process can use external partner Web Services. In that case, it becomes neces-
sary to address the security requirements of the process as part of the process
deployment configuration.

With respect to enforcement, all BPEL implementations enforce the non-
functional requirements of the process activities outside the process interpreter.
They intercept the SOAP messages and modify or verify them by using some
implementations of WS-* specifications (provided by a message handler, by a
policy handler, or by an Enterprise Service Bus). That is, the enforcement
of non-functional requirements is completely decoupled from the process inter-
preter in all BPEL implementations. Consequently, these implementations can-
not enforce process-level requirements. To enforce such requirements, a tighter
integration and coordination between the process execution and the WS-* based
handlers is needed.

6.4 Overview of the Framework

BPEL allows building composite Web Services by gluing together other Web
Services in a similar way to Component-Based Software Development [173],
which allows building applications by assembling software components. Inspired
by this analogy, the approach taken by enterprise component models such as
Enterprise Java Beans (EJB) [65] and Corba Component Model (CCM) [87] for
the specification and enforcement of non-functional properties was studied.

Enterprise component models introduce a deployment descriptor to specify
declaratively the non-functional properties of the application and a container
to enforce those properties. The container is the runtime environment of the
component-based application. The client never interacts directly with the native
component implementation, but rather via the container, which calls infrastruc-
tural services to enforce the non-functional requirements of the application. The
container concept allows component developers to focus on the business logic
and takes over technical concerns such as security and persistence.

Enterprise component models introduce different roles in software develop-
ment: the component provider implements software components using some
programming language, the application assembler composes applications from
components that may originate from other companies (off-the-shelf), the ap-
plication deployer sets up a component-based application in a given runtime
environment and configures its non-functional properties.

In analogy to enterprise component models, this chapter introduces a con-
tainer framework to support the non-functional requirements of BPEL processes.

108

This framework has three main components as shown in Figure 6.1: the deploy-
ment descriptor, the process container, and the middleware services. These
components will be explained in the following subsections.

SOAP

Partner

BPEL Engine

Transaction
begin
participate
commit
rollback

<invoke/>

Interpreter

Encrypted
SOAP

Process Container

<process>
...
<receive/>....
<invoke...
 operation=“credit“ .../>
...
<reply/>
...
</process>

<invoke...
 operation=“credit“ .../>

SOAP Engine
Deployment Descriptor

Middleware services

...
<selector type=“activity“ id=“1“>
 //invoke[@operation=“credit“]
</selector>
...
<service name=“security“>
<requirement class=“confi dentiality“
 type=“encryption“ selectorid=“1“>
</requirement>
</service>
...

<selector type=“activity“ id=“1“>
 //invoke[@operation=“credit“]
</selector>

1

2

3
4

5

Reliable Messaging

sendWithExactlyOnce...
startSequenceWith...
addToReliableSequence
...

sendWithAtLeastOnce...

Security
signMessage

encryptMessage

createContext
encryptWithContext

checkSignedMessage

decryptMessage

...

Figure 6.1: The process container framework

Figure 6.1 illustrates how the process container uses the middleware services
to enforce the non-functional requirements of the process activities. In that
figure, the container of the transfer process intercepts the execution of the invoke
activity that calls the operation credit as specified in the deployment descriptor
(arrow 1). Then, the container suspends that invoke activity (arrow 2) and
calls the security service. The latter takes the SOAP message corresponding to
the invoke activity in input (arrow 3), encrypts that message, and returns the
encrypted message to the container (arrow 4). After that, the container resumes
the suspended invoke activity, which sends the encrypted message instead of the
original one (arrow 5).

The container framework introduces different roles in the development of
Web Service compositions: the programmer implements a Web Service, the
composer writes a BPEL process that composes existing Web Services, the de-
ployer configures the non-functional properties of the BPEL process depending
on the hosting engine, the process requirements, and the partner Web Services.

The components of the process container framework can be grouped based on
whether they address the specification or the enforcement of the non-functional
requirements in BPEL. The framework user need only to know about the com-
ponents that are necessary for requirement specification.

109

6.4.1 Requirement specification

From the user perspective, the framework takes an XML-based deployment
descriptor as input in addition to the BPEL process definition. The BPEL
process defines the functional logic of the composition, whereas the deployment
descriptor defines the non-functional requirements of the process activities in a
declarative way.

The deployment descriptor specifies non-functional requirements such as
which messaging activities need guaranteed delivery assurances, which activ-
ities are transactional, etc. In addition, the deployment descriptor specifies the
parameters that are needed to enforce the non-functional requirements. For
instance, if confidentiality support is required for some invoke activity, the de-
ployment descriptor should specify the parameters that will be used by the
container to encrypt and decrypt the messages corresponding to that activity.

For illustration, Listing 6.4 shows a deployment descriptor for the bank
transfer process that was presented in Section 6.2.

The deployment descriptor consists mainly of activity selectors and require-
ments that are grouped according to the non-functional concern they belong
to. The activity selectors are XPath expressions that identify a set of activities,
which will be associated with some non-functional requirements. In Listing 6.4,
the deployment descriptor defines three selectors (lines 2–12). The first two
select the invoke activities that call the operations credit and debit. The third
one selects the sequence activity debit credit.

The deployment descriptor also contains one or more service elements, which
group the requirements that belong to a specific middleware service. For exam-
ple, the deployment descriptor shown in Listing 6.4 defines requirements on the
middleware services for reliable messaging, security, and transaction.

Each requirement is specified using a requirement element. The necessary
parameters for enforcing requirements are specified using the parameter element.
The type of a requirement is uniquely defined by combining the values of the
attributes class and type of the requirement element. For example, the require-
ment req1 (lines 26–37) is an encryption requirement, which also specifies the
necessary parameters such as encryption algorithm, transport key id, etc (lines
28–36). The attribute selectorid of the requirement element allows to associate
the requirement with a selector, e.g., the requirement req1 is associated to the
selector that has the id 1 (defined in lines 6–8).

To make the framework more user-friendly, a graphical user interface tool has
been developed. This tool allows the automatic generation of the deployment
descriptor without writing the XML code manually. This tool can also load
existing deployment descriptor files and allows the user to modify them and
save them. The deployment descriptor graphical tool provides three views: one
for defining selectors as shown in Figure 6.2, one for defining requirements as
shown in Figure 6.3, and one for associating requirements with selectors.

110

1 <bpel−dd>
2 <selectors>
3 <selector id=”0” name=”credit” type=”activity”>
4 //invoke[@operation=”credit”]
5 </selector>
6 <selector id=”1” name=”debit” type=”activity”>
7 //invoke[@operation=”debit”]
8 </selector>
9 <selector id=”2” name=”debit credit” type=”compoundActivity”>

10 //sequence[@name=”debit credit”]
11 </selector>
12 </selectors>
13 <services>
14 <service name=”reliablemessaging”>
15 <requirements>
16 <requirement name=”req0” class=”semantics”
17 type=”exactlyOnce” selectorid=”1”/>
18 <requirement name=”req0” class=”semantics”
19 type=”exactlyOnce” selectorid=”0”/>
20 </requirements>
21 </service>
22 <service name=”security”>
23 <requirements>
24 <requirement name=”req2” class=”confidentiality”
25 type=”decryption” selectorid =”1”/>
26 <requirement name=”req1” class=”confidentiality”
27 type=”encryption” selectorid =”1”>
28 <parameters>
29 <parameter name=”symmetricEncAlgorithm”>
30 xmlenc#tripledes−cbc</parameter>
31 <parameter name=”keyEnc”>
32 http://www.w3.org/2001/04/xmlenc#rsa−1 5</parameter>
33 <parameter name=”transportKeyId”>
34 16c73ab6−b892−458f−abf5−2f875f74882e</parameter>
35 <parameter name=”keyIdentifierType”>−1</parameter>
36 </parameters>
37 </requirement>
38 </requirements>
39 </service>
40 <service name=”transaction”>
41 <requirements>
42 <requirement name=”req3” class=”atomic”
43 type=”completion” selectorid =”2”/>
44 </requirements>
45 </service>
46 </services>
47 </bpel−dd>

Listing 6.4: A deployment descriptor for the transfer process

111

Figure 6.2: The selector view of the GUI tool

Figure 6.3: The requirement view of the GUI tool

6.4.2 Requirement enforcement

The process container and the middleware services are responsible for enforcing
the non-functional requirements that are specified in the deployment descriptor.
Both the container and the middleware services are concepts at the implemen-
tation level that the framework users do not have to know about.

The process container

BPEL processes are executed inside a process container, which intercepts the
execution of certain activities at well-defined points in order to enforce the non-
functional requirements of those activities.

To enforce messaging-level requirements, the container just needs to inter-
cept one messaging activity. For example, to encrypt the request message of an
invoke activity, the process container intercepts that activity at the point where
the request message is created and encrypts it.

112

To enforce process-level requirements, the container needs to intercept the
structured activity and its nested messaging activities. For example, to exe-
cute the sequence activity debit credit as a transaction, the process container
intercepts that activity and its children as follows.

1. When the sequence starts, the process container intercepts it and creates
a coordination context for the new transaction.

2. When the nested invoke activities are executed the container intercepts
them and enhances their request messages with a transaction header that
contains the coordination context.

3. If a fault was thrown during the execution of the sequence activity, the
process container rolls back the transaction.

4. When the sequence completes, the process container runs the 2-Phase-
Commit protocol to decide on the outcome of the transaction.

For modularity reasons the container does not implement middleware func-
tionality such as encrypting a message or creating a coordination context by
itself. Instead, the container calls external middleware services, which provide
that functionality.

The separation of container and middleware services makes the container
light-weight. Moreover, it allows the middleware services to be replaced by
other services that provide the same interface. With some appropriate container
implementation techniques, it should be possible to add new middleware services
to the framework easily.

The middleware services

The middleware services provide the necessary functionality to enforce the non-
functional requirements of BPEL processes. Three middleware Web Services
were implemented for security, reliable messaging, and transactions.

The security service allows to secure the SOAP messages of messaging ac-
tivities, e.g., by adding authentication tokens to them, encrypting or signing
them, etc. In addition, it supports the creation and cancellation of a secure
conversation context as well as the use of that context for encrypting messages,
signing messages, etc.

The reliable messaging service allows to send the SOAP messages of mes-
saging activities with a guaranteed delivery assurance such as exaclty-once. In
addition, it supports the ordered delivery of messages corresponding to messag-
ing activities, even when these messages go to different partners.

The transaction service allows to create a new transaction, add a messaging
activity to a transaction, start the 2-Phase-Commit protocol, and roll back a
transaction.

6.5 Conclusion

This chapter presented several non-functional requirements of BPEL processes
such as security, reliable messaging, and transactions. These requirements were
classified into messaging-level requirements and process-level requirements.

113

After surveying a number of current BPEL engines w.r.t. their support
for security, reliable messaging, and transactions, it became clear that process-
level requirements such as secure conversations and multi-party ordered message
delivery are unsupported.

To support the process-level requirements, this chapter introduced a generic,
modular, and user-friendly process container framework, which uses a deploy-
ment descriptor to specify the non-functional requirements declaratively. More-
over, the framework uses a process container and several middleware services to
enforce those requirements.

This chapter presented the framework components at the conceptual level
only. The next chapter will describe the implementation of the framework. The
container is implemented by a set of AO4BPEL aspects that are generated auto-
matically from the deployment descriptor using XSLT. The middleware services
are implemented as Web Services by extending Open Source implementations of
WS-* specifications. The middleware Web Services are called from the advice of
container aspects to enforce the non-functional requirements of the activities.

114

CHAPTER 7

Implementing the Process Container Framework

7.1 Introduction

The previous chapter presented a process container framework that supports
the non-functional requirements of BPEL processes. This chapter1 will present
the implementation of that framework.

The process container is implemented as a light-weight and aspect-based
container2 using a set of AO4BPEL aspects. With appropriate pointcuts, the
container intercepts the execution of the process activities at well-defined points.
At these points, the container uses appropriate advice to call the middleware
services, which are implemented as Web Services.

The framework users do not have to write the container aspects manually.
They define a deployment descriptor, from which the container aspects will be
generated automatically using XSLT. This makes the process container frame-
work user-friendly.

The process container does not provide the middleware functionality by it-
self. For modularity reasons, this functionality is provided by the middlware
Web Services, which are not part of the BPEL engine. Hence, these services
can be replaced easily by other ones and new services can be added.

This chapter will also present three middleware Web Services: for security,
reliable messaging, and transactions. These middleware Web Services extend
Open Source implementations of WS-Security, WS-ReliableMessaging, and WS-
AtomicTransaction. The implementation of the reliable messaging Web Service
is especially challenging because current WS-* specifications for reliable mes-
saging do not support reliable messaging between more than two endpoints.

The remainder of this chapter is organized as follows. Section 7.2 presents
the container implementation using AO4BPEL aspects and the automatic gen-
eration of the container aspects. Section 7.3 presents the security Web Service.

1Parts of this chapter were published in the paper Reliable, Secure, and Transacted Web
Service Compositions with AO4BPEL, ECOWS 2006 [41].

2A formal demo of the aspect-based container implementation was given at BPM 2006 [39].

115

Section 7.4 presents the reliable messaging Web Service. Section 7.5 presents
the transaction Web Service. Section 7.6 discusses the limitations of the current
implementation. Section 7.7 reports on related work. Section 7.8 concludes this
chapter.

7.2 An AO4BPEL-based Container

This section shows the advantages that an aspect-based implementation of the
process container brings. Moreover, it presents the different types of container
aspects and gives some examples. In addition, it explains how the automatic
generation of these aspects works.

7.2.1 Container aspects

The container aspects intercept the execution of the process activities at well-
defined points using appropriate pointcuts, which capture either activity join
points or internal join points. Then, these aspects call the middleware Web
Services with appropriate advice, e.g., to create a secure conversation context,
encrypt or sign a message, add a reliable messaging header to some message,
start an atomic transaction, etc.

Examples

In the following, three examples of container aspects are presented. These as-
pects are generated from the deployment descriptor that was shown in Listing
6.4 in Chapter 6.

A security aspect Listing 7.1 shows a security aspect, which enforces the
confidentiality requirement of the invoke activity that calls the operation debit.
This aspect declares the security Web Service as partner (line 3). Moreover, it
defines two variables (lines 6–7), which contain the input and output data of
the invoke activity that calls the operation encryptMessage on the security Web
Service (lines 37–39).

The pointcut of this aspect (lines 10–12) selects the invoke activity that calls
the operation debit. It intercepts the point during the execution of that activity,
where the SOAP request message has been created and it is about to be sent
out. This join point is selected by using the advice type before soapmessageout
together with a cross-layer pointcut.

The advice of this aspect is executed before reaching the internal join point
that is selected by the pointcut. The advice activity is a sequence activity (lines
14–46) that contains an assign activity (lines 15–36) for setting the different
input parameters of the call to the operation encryptMessage, an invoke activ-
ity for calling that operation on the security Web Service (lines 37–39), and
another assign activity (lines 40–45) for overriding the request message of the
join point activity with the encrypted message that is returned by the security
Web Service.

In this advice, the request message of the join point activity (i.e., the invoke
activity that calls the operation debit) is accessed by means of the AO4BPEL
context collection variable soapmessage (line 17). The special context collection

116

1 <aspect name=” debit confidentiality encryption ”>
2 <partnerLinks>
3 <partnerLink name=”securityService” partnerLinkType=”SecServPLT”/>
4 </partnerLinks>
5 <variables>
6 <variable messageType=”encryptMessageRequest” name=”inMsg”/>
7 <variable messageType=”encryptMessageResponse” name=”SecMsg”/>
8 </variables>
9 <pointcutandadvice>

10 <pointcut name=”debit” type=”internal” designator=”soapmessageout”>
11 //invoke[@operation=”debit”]
12 </pointcut>
13 <advice type=”before soapmessageout”>
14 <sequence>
15 <assign>
16 <copy>
17 <from part=”message” variable=”soapmessage”/>
18 <to part=”msg” variable=”inMsg”/></copy>
19 <copy>
20 <from expression=”’http://www.w3.org/2001/04/xmlenc#tripledes−cbc’”/>
21 <to part=”symmetricEncAlgorithm” variable=”inMsg”/>
22 </copy>
23 <copy>
24 <from expression=”’http://www.w3.org/2001/04/xmlenc#rsa−1 5’”/>
25 <to part=”keyEnc” variable=”inMsg”/>
26 </copy>
27 <copy>
28 <from expression=”’16c73ab6−b892−458f−abf5−2f875f74882e’”/>
29 <to part=”transportKeyId” variable=”inMsg”/>
30 </copy>
31 <copy>
32 <from expression=”’−1’”/>
33 <to part=”keyIdentifierType” variable =”inMsg”/>
34 </copy>
35 ...
36 </assign>
37 <invoke name=”ssencryptInvoke” partner=”securityService”
38 operation=”encryptMessage” portType=”SecurityServicePT”
39 inputVariable =”inMsg” outputVariable=”SecMsg”/>
40 <assign>
41 <copy>
42 <from part=”encryptMessageReturn” variable=”SecMsg”/>
43 <to part=”newmessage” variable=”newsoapmessage”/>
44 </copy>
45 </assign>
46 </sequence>
47 </advice>
48 </pointcutandadvice>
49 </aspect>

Listing 7.1: A container aspect for encryption

117

variable newsoapmessage is used to pass data from the middleware Web Service
to the process. In the encryption advice, this variable is used to override the
SOAP message of the current join point activity by the encrypted message that
was returned by the security Web Service (line 43). Consequently, when the join
point activity executes after advice completion, it sends the encrypted message
instead of the original one.

A reliable messaging aspect Listing 7.2 shows a reliable messaging aspect,
which enforces the exactly-once delivery assurance for the invoke activity that
calls the operation credit.

This aspect declares one partner, which is the reliable messaging Web Service
(line 3) and two variables (lines 6–7), which contain the input and output data
for the invoke activity that calls the operation sendWithExactlyOnceSemantics
on the reliable messaging Web Service (lines 29–31).

The pointcut of this aspect (lines 10–12) intercepts the invoke activity that
calls the operation credit at the same internal join point as the encryption
advice shown in Listing 7.1. This join point is captured by using the advice
type around soapmessageout in conjunction with a cross-layer pointcut. The
effect of the around soapmessageout advice is to execute the advice activity
instead of the internal join point that is selected by the pointcut.

Unlike the encryption aspect, the usage of the around soapmessageout advice
in this aspect is necessary because the reliable messaging Web Service must
send the SOAP message on behalf of the process to ensure the reliable delivery.
That is, the advice of the reliable messaging aspect must be executed instead
of the internal join point during the execution of the invoke activity that calls
the operation credit. This activity should complete without sending the SOAP
message once more. In the encryption aspect, the advice just overrides the
request message of the join point activity by an encrypted message. Sending
the message is done by the invoke activity itself and not by the security Web
Service.

The advice of the reliable messaging aspect (lines 13–39) consists of a se-
quence that contains three activities: an assign activity for setting the input
parameters of the call to the reliable messaging Web Service (lines 15–28), an
invoke activity for calling the operation sendWithExactlyOnceSemantics on the
reliable messaging Web Service (lines 29–31), and another assign activity to pass
the response message of the operation credit from the reliable messaging Web
Service back to the process (lines 32–37). This is necessary because the reliable
messaging Web Service, which has sent the request message of the operation
credit, receives the response message of that operation and not the process.

In this advice, the request message of the join point activity is accessed by
means of the AO4BPEL context collection variable soapmessage (line 17). The
values of the input parameters of the operation sendWithExactlyOnceSemantics
are accessed using the AO4BPEL reflective variable ThisJPActivity (lines 21 and
25). This operation takes two input parameters: a boolean indicating whether
the message that will be sent corresponds to a one-way interaction and the
endpoint of the partner that the message will be sent to. To pass the response
message of the operation credit from the reliable messaging Web Service to the
process, the context collection variable newsoapmessage is used (line 35).

118

1 <aspect name=”credit semantics exactlyOnce”>
2 <partnerLinks>
3 <partnerLink name=”rmService” partnerLinkType=”RMService”/>
4 </partnerLinks>
5 <variables>
6 <variable messageType=”sendExactlyOnceReq” name=”inMsg”/>
7 <variable messageType=”sendExactlyOnceRes” name=”outMsg”/>
8 </variables>
9 <pointcutandadvice>

10 <pointcut name=”credit” type=”internal” designator=”soapmessageout”>
11 //invoke[@operation=”credit”]
12 </pointcut>
13 <advice type=”around soapmessageout”>
14 <sequence>
15 <assign>
16 <copy>
17 <from part=”message” variable=”soapmessage”/>
18 <to part=”message” variable=”inMsg”/>
19 </copy>
20 <copy>
21 <from part=”isInonly” variable =”ThisJPActivity”/>
22 <to part=”inonly” variable =”inMsg”/>
23 </copy>
24 <copy>
25 <from part=”partnerEndpoint” variable=”ThisJPActivity”/>
26 <to part=”endpoint” variable=”inMsg”/>
27 </copy>
28 </assign>
29 <invoke operation=”sendWithExactlyOnceSemantics” name=”rmInvoke”
30 partner=”rmService” portType=”RMService”
31 inputVariable =”inMsg” outputVariable=”outMsg”/>
32 <assign>
33 <copy>
34 <from part=”sendExactlyOnceReturn” variable=”outMsg”/>
35 <to part=”newmessage” variable=”newsoapmessage”/>
36 </copy>
37 </assign>
38 </sequence>
39 </advice>
40 </pointcutandadvice>
41 </aspect>

Listing 7.2: A container aspect for reliable messaging

A transaction aspect Listing 7.3 shows a container aspect for transaction
rollback. This aspect declares one partner, which is the transaction Web Service
(line 3) and two variables (lines 6–7), which contain the input and output data
for the invoke activity that calls the operation rollback on the transaction Web
Service (lines 23–25).

The pointcut of this aspect selects the sequence activity debit credit. This
pointcut is associated with an around advice (lines 13–32) that embeds that

119

activity using the proceed activity (line 29) in a scope that has a compensa-
tion handler. When a fault occurs during the execution of the sequence activ-
ity, which is selected by the pointcut, the default fault handler calls implicitly
that compensation handler. Consequently, the operation rollback is called on
the transaction Web Service. The part scopeid of the reflective variable ThisJ-
PActivity is used in the compensation handler as an identifier for the transaction
(line 19).

1 <aspect name=”transaction rollback”>
2 <partnerLinks>
3 <partnerLink name=”transactionService” partnerLinkType=”txServicePLT”/>
4 </partnerLinks>
5 <variables>
6 <variable name=”inMessage” messageType=”rollbackRequest”/>
7 <variable name=”outMessage” messageType=”rollbackResponse”/>
8 </variables>
9 <pointcutandadvice>

10 <pointcut name=”transactivity”>
11 /process//sequence[@name=”debit credit”]
12 </pointcut>
13 <advice type=”around”>
14 <scope>
15 <compensationHandler>
16 <sequence>
17 <assign>
18 <copy>
19 <from part=”scopeid” variable=”ThisJPActivity”/>
20 <to part=”id” variable=”inMessage”/>
21 </copy>
22 <assign>
23 <invoke name=”trans rollback” operation=”rollback”
24 inputVariable =”inMessage” outputVariable=”outMessage”
25 partner=”transactionService” portType=”TXService”/>
26 </sequence>
27 </compensationHandler>
28 <sequence>
29 <proceed/>
30 </sequence>
31 </scope>
32 </advice>
33 </pointcutandadvice>
34 </aspect>

Listing 7.3: A container aspect for transaction rollback

Execution order of container aspects

A process activity may be matched by more than one container aspect. For
example, the invoke activity that calls the operation debit in the transfer process
can be matched by pointcuts that are defined in container aspects for message
encryption, message decryption, message sending with exactly-once semantics,
and participation in a transaction.

120

When several container aspects match the same join point activity, the
AO4BPEL engine executes them in the following order according to the advice
type: before → around → before soapmessageout → around soapmessageout →
around soapmessagein → after soapmessagein → after.

In the case of a synchronous invoke activity such as the one that calls the
operation debit, the advice type based execution order ensures that the encryp-
tion aspect, which has the advice type before soapmessageout is executed before
the decryption aspect, which has the advice type after soapmessagein.

The advice type based execution order also ensures that the encryption
aspect and the transaction participation aspect are executed before the re-
liable messaging aspect, which sends the message of the join point activity
with exactly-once semantics. The first two aspects have the advice type before
soapmessageout, whereas the third has the advice type around soapmessageout.

If there are two container aspects that are executed at the same join point
and they also have the same advice type, the order attribute of the advice
element can be used to define the advice execution order.

For example, both the encryption aspect and the aspect for participating
in a transaction use advice of the type before soapmessageout. If one wants to
first add a transaction header to the request message of the invoke activity and
then encrypt that message, one has to set the order attribute of the transaction
advice to a lower value than the order attribute of the encryption advice. Thus,
the transaction aspect will be executed before the encryption aspect. If one
wants to add a transaction header to the encrypted message, one sets the values
of the order attributes in reverse order.

7.2.2 Generation of container aspects

The container aspects are generated automatically from the deployment de-
scriptor because the advice used for integrating the middleware Web Services
follow well-defined patterns. For instance, for security, there are recurring pat-
terns for adding authentication tokens to messages, signing messages, starting
a secure conversation, etc. For reliable messaging, there are recurring patterns
for sending a message with exactly-once semantics, creating a reliable messaging
sequence, etc. For transactions, there are recurring patterns for starting a trans-
action, adding a messaging activity to a transaction, committing a transaction,
etc. These recurring patterns are called aspect types.

Aspect types

There is at least one aspect type for each non-functional requirement that can be
specified in the deployment descriptor. Tables 7.1, 7.2, and 7.3 show the aspect
types that are generated automatically. The first column shows the aspect type,
the second column shows where the aspect takes effect, the third column shows
the advice execution order. The join point activities that can be selected by
these aspects and their advice types are also shown in these tables.

121

Aspect type Join point Advice type

message encryption invoke/reply before soapmessageout

message decryption invoke/receive after soapmessagein

message signature invoke/reply before soapmessageout

checking message signature invoke/receive after soapmessagein

message authentication invoke/reply before soapmessageout

checking authentication token invoke/receive after soapmessagein

creating a conversation context sequence before

canceling a conversation context sequence after

message encryption with context invoke/reply before soapmessageout

message decryption with context invoke/receive after soapmessagein

message signature with context invoke/reply before soapmessageout

checking signed message with context invoke/receive after soapmessagein

Table 7.1: Aspect types for security

Aspect type Join point Advice type

sending a message exactly-once invoke/reply around soapmessageout

sending a message at-most-once invoke/reply around soapmessageout

sending a message at-least-once invoke/reply around soapmessageout

creating a new RM sequence sequence before

adding a message to an RM sequence invoke/reply around soapmessageout

Table 7.2: Aspect types for reliable messaging

Aspect type Join point Advice type

starting an atomic transaction sequence/flow/scope before

adding a message to a transaction invoke/reply before soapmessageout

committing a transaction sequence/flow/scope after

rolling back a transaction sequence/flow around

Table 7.3: Aspect types for transactions

122

Generation with XSLT

Container aspects that correspond to the same aspect type have advice that
follow well-defined patterns. They only vary in their pointcut expressions and
in the values of the input parameters that are passed to the middleware Web
Service. Because of this high similarity, aspects that have the same aspect type
share a common skeleton. The variable parts of these aspects can be set using
the data of the deployment descriptor.

For these reasons, the generation of container aspects is implemented as
a transformation of some parts of the deployment descriptor into AO4BPEL
aspects. The generation instructions for each aspect type are specified in an
aspect template, which is implemented by an XSLT style sheet. That is, there
is an XSLT style sheet for each requirement type that can be specified in the
deployment descriptor.

The generation process is illustrated in Figure 7.1. The aspect generator
tool takes the deployment descriptor as input, looks for XSLT style sheets in
a predefined directory, and then runs each of them against the deployment
descriptor. If a style sheet finds a matching requirement type in the deployment
descriptor, it generates one or more container aspects.

Deployment
Descriptor

Aspects

Generator
Aspect

Template

Aspect
Frame

include

matches(service,class,type)?matches(service,class,type)?
yes -> generate aspectyes -> generate aspect

for each for each for each
requirement

generate

Figure 7.1: Aspect generation

The common parts of the style sheets of a given middleware concern are
factored out into an aspect frame, which is included in each style sheet. For
instance, there is an aspect frame for all security aspects. This frame emits
parts that are shared by all security aspects such as the partner link to the
security Web Service.

The specific parts of each aspect are defined in each XSLT style sheet using
templates that are called by the aspect frame to generate the variable parts of the
aspect. This approach is necessary because the advice code that copies the input
parameters in an encryption advice for instance is different from the advice code
that copies the input parameters in a message signing advice. Consequently,
each aspect template must define its own template for copying input parameters
and the latter is called from the shared aspect frame for security.

Listing 7.4 shows the aspect template for generating message encryption
aspects. This template configures the security aspect frame to match the mes-
sage encryption requirement type by setting the variables serviceName (line 3),

123

reqClass(line 8), and reqType (lines 9) to the triple (security, confidentiality,
encryption). This aspect template includes the security aspect frame (line 13)
and defines a template (lines 14–35) for generating the BPEL code that sets
the input and output parameters of the call to the security Web Service in the
advice of the encryption aspect.

1 <xsl: stylesheet xmlns: xsl =”http://www.w3.org/1999/XSL/Transform”...>
2 <xsl: variable name=”partnerName” select=”’securityService’”/>
3 <xsl:variable name=”serviceName” select=”‘security´”/>
4 <xsl: variable name=”partnerLinkType” select=”’SecurityServicePLT’”/>
5 <xsl: variable name=”inputMessageType” select=”’encryptMessageRequest’”/>
6 <xsl: variable name=”outputMessageType” select=”’encryptMessageResponse’”/>
7 <xsl: variable name=”serviceOperationName” select=”’encryptMessage’” />
8 <xsl:variable name=”reqClass” select=”’confidentiality’”/>
9 <xsl:variable name=”reqType” select=”’encryption’”/>

10 <xsl: variable name=”inputMessagePartToCopyIn” select=”’msg’”/>
11 <xsl: variable name=”responsePartToCopy” select=”’encryptMessageReturn’”/>
12 <xsl: variable name=”aspectAdviceType” select=”’before soapmessageout’”/>
13 <xsl:include href=”aspectframes/securityaspectframe.xsl”/>
14 <xsl:template name=”copyParameters”>
15 <xsl: call−template name=”copyParameter”>
16 <xsl:with−param name=”parametername” select=”’key’” />
17 </xsl: call−template>
18 <xsl: call−template name=”copyParameterWithDefaultValue”>
19 <xsl:with−param name=”parametername” select=”’symmetricEncAlgorithm’” />
20 <xsl:with−param name=”default−value”
21 select =”’http://www.w3.org/2001/04/xmlenc#tripledes−cbc’”/>
22 </xsl: call−template>
23 <xsl: call−template name=”copyParameterWithDefaultValue”>
24 <xsl:with−param name=”parametername” select=”’keyEnc’” />
25 <xsl:with−param name=”default−value”
26 select =”’http://www.w3.org/2001/04/xmlenc#rsa−1 5’”/>
27 </xsl: call−template>
28 <xsl: call−template name=”copyParameter”>
29 <xsl:with−param name=”parametername” select=”’transportKeyId’” />
30 </xsl: call−template>
31 <xsl: call−template name=”copyParameterWithDefaultValue”>
32 <xsl:with−param name=”parametername” select=”’keyIdentifierType’” />
33 <xsl:with−param name=”default−value” select=”’−1’” />
34 </xsl: call−template>
35 </xsl:template>
36 </xsl: stylesheet >

Listing 7.4: Aspect template for message encryption

Listing 7.5 shows an excerpt of the security aspect frame. This frame uses
the variables that are defined in the aspect template that includes it. The
first template (lines 2–6) is triggered by the element services of the deployment
descriptor. For each requirement element, this template calls a second template
(lines 7–45), which matches only when the values of the attributes class and
type of the requirement element match those defined by the including aspect
template. In such a case, an aspect will be generated provided that a non
empty selector is associated with the requirement (line 9).

124

1 <xsl: stylesheet xmlns: xsl =”http://www.w3.org/1999/XSL/Transform”...>
2 <xsl:template match=”dd:services”>
3 <!−− generate security aspect−−>
4 <xsl:apply−templates select=”dd:service [@name=$serviceName]//dd:requirement
5 [@class=$reqClass and @type=$reqType]” />
6 </xsl:template>
7 <xsl:template match=”dd:requirement[@class=$reqClass and @type=$reqType]”>
8 <xsl: variable name=”selectorid” select =”@selectorid” />
9 <xsl: if test =”//dd:selector[@id=$selectorid]”>

10 <xsl: text disable−output−escaping=”yes”><aspect name=”
11 <xsl:value−of select =”concat(
12 //dd: selector [@id=$selectorid]/@name,’ ’,@class ,’ ’, @type)” />”>
13 </xsl: text>
14 <partnerLinks>
15 <partnerLink name=”{$partnerName}” serviceLinkType=”{$SLType}”/>
16 </partnerLinks>
17 <variables>
18 <variable name=”inMsg” messageType=”{$inMsgType}”/>
19 <variable name=”SecMsg” messageType=”{$outMsgType}”/>
20 </variables>
21 <pointcut name=”{//dd:selector[@id=$selectorid]/@name}”>
22 <xsl:value−of select =”//dd:selector[@id=$selectorid]”/>
23 </pointcut>
24 <advice type=”{$aspectAdviceType}”>
25 <sequence>
26 <assign>
27 <copy>
28 <from variable=”soapmessage” part=”message”/>
29 <to variable =”inMsg” part=”{$requestMsgPart}”/>
30 </copy>
31 <xsl: call−template name=”copyParameters” />
32 </assign>
33 <invoke name= ”{$serviceName} {$serviceOpName}” partner=”{$partnerName}”
34 portType=”{$serviceName}” operation=”{$serviceOpName}”
35 inputVariable =”inMsg” outputVariable=”SecMsg” />
36 <assign>
37 <copy>
38 <from variable=”SecMsg” part=”{$responseMsgPart}”/>
39 <to variable =”newsoapmessage” part=”newmessage”/>
40 </copy>
41 </assign>
42 </sequence>
43 </advice>
44 <xsl: text disable−output−escaping=”yes”></aspect></xsl:text>
45 </xsl:template>
46 <xsl:template name=”copyParameter”>
47 <xsl:param name=”parametername” />
48 <copy>
49 <from expression=”’{dd:parameters/dd:parameter[@name=$parametername]}’”/>
50 <to variable =”inputMessage” part=”{$parametername}” />
51 </copy>
52 </xsl:template>
53 <xsl:template name=”copyParameterWithDefaultValue”>
54 ...
55 </xsl:template>
56 ...
57 </xsl: stylesheet >

Listing 7.5: Aspect frame for security aspects

125

The generation of the aspect code starts by emitting the aspect element
(line 10). The partner and variable declarations are generated and set using
the variables that are defined in the including aspect template (lines 14–20).
The content of the pointcut element is set to the activity selector of the current
requirement (lines 21–23).

After that, the advice code is generated (lines 24–43). The first copy state-
ment of the assign activity that sets the input data of the call to the security
Web Service is generated by the aspect frame (lines 27–30). The other copy
statements are aspect type specific. Therefore, they are generated by the as-
pect template, which provides a template called copyParameters (lines 14–35).
The latter calls recursively some templates of the aspect frame such as copyPa-
rameter (lines 46–52). The invoke activity that calls the security Web Service
is generated by the aspect frame (lines 33–35) followed by an assign activity,
which overrides the original SOAP message with the secured one (lines 36–41).

Integration with the AO4BPEL engine

The generation of container aspects is integrated with the process deployment
tool of the AO4BPEL engine. The process deployment interface of the AO4BPEL
engine was extended with an input field for the deployment descriptor file.

For example, to deploy the bank transfer process, the user specifies the BPEL
file, the WSDL file of the composite Web Service (i.e., the transfer Web Service),
and the deployment descriptor file as shown in Figure 7.2.

Figure 7.2: Deploying the transfer process

In the next step, the user specifies the WSDL files of the partner Web Ser-
vices of the transfer process. Then, the process deployment is completed and
the composite Web Service can serve client requests. Moreover, the container
aspects are generated from the deployment descriptor and they are deployed
automatically on the AO4BPEL engine.

126

Figure 7.3: The process view of the AO4BPEL engine

The user can see the container aspects by switching to the process list view
of the AO4BPEL engine. This view visualizes the aspects that affect each
deployed process as shown in Figure 7.3. Alternatively, the user can switch
to the aspect view, which shows all aspects that are currently deployed in the
AO4BPEL engine. The user can modify or extend the container by undeploying
some container aspects and/or deploying new ones.

7.2.3 Advantages of the aspect-based container

The aspect-based implementation of the process container results in a light-
weight, extensible, open, and dynamically configurable container.

First, this implementation is modular because the container and the BPEL
engine are two separate and independent components. Whilst the programmer
has no access to the implementation of the BPEL engine, he has full access
to the aspects that implement the process container. Consequently, one can
easily understand and extend the container implementation. Moreover, the
container itself is modular as each non-functional concern is implemented by
separate aspects. In this way, the container logic that is responsible for security
for instance can be understood and maintained independently of the container
logic that is responsible for reliable messaging and transactions.

Second, the aspect-based container is extensible. That is, other non-functional
concerns such as persistence or notification can be supported by writing appro-

127

priate AO4BPEL aspects. In particular, no changes to the BPEL engine are
required for such an extension.

The aspect-based container does not only provide extensibility points but
its entire implementation is exposed in the advice of the container aspects.
Thus, the programmer can see how a certain requirement is enforced and which
middleware Web Services are called at what points during the activity execution.

Third, the container can be modified at runtime according to the needs of the
applications. The programmer can add or remove aspects to/from the container
of a given process without redeploying that process. This feature is especially
useful in the highly dynamic context of Web Service composition because the
policies of some partner Web Service may change after the process deployment.

For example, the security policy of some partner Web Service can be up-
dated to require X.509 tokens for authentication instead of username tokens. In
that case, the container can be reconfigured by undeploying the authentication
aspects that add username tokens to the message and deploying authentication
aspects that add X.509 tokens. This reconfiguration can also be done at runtime
because the AO4BPEL engine supports the dynamic composition of aspects and
processes.

7.3 The Security Web Service

The security Web Service3 provides operations to enforce the security require-
ments of BPEL activities.

7.3.1 The interface

The operations of the security Web Service are grouped in two port types: one
for secure messaging (according to WS-Security) and one for secure conversa-
tions (according to WS-SecureConversation).

String addToken(String msg, String tokenid , String tokentype,
boolean encrypted, String actor , int timetolive)

boolean checkToken(String msg, string tokentype)
String signMessage(String msg, String algorithm , String name,
boolean useSingleCert , int keyIdType, String actor , int timetolive)
boolean checkSignature(String msg, String algorithm)
String encryptMessage(String msg, String key, String symEncAlgorithm,

String keyEnc, String transportKeyId , int keyIdType,
String actor , int timetolive)

String decryptMessage(String msg, String symEncAlgorithm)

Listing 7.6: The secure messaging port type

Secure messaging port type

Listing 7.6 shows the operations of the secure messaging port type. This port
type provides operations for adding a user name or a binary token to a message,
checking an authentication token, adding a signature to a message, checking

3Parts of this section were published in the Paper Using Aspects for Security Engineering
of Web Service Compositions, ICWS 05 [36].

128

a signed message, encrypting a message, and decrypting a message. All these
operations take the SOAP message as the first parameter. Some of them return
a String representation of the SOAP message after processing it according to
WS-Security. The operations checkSignature and checkToken return a boolean
indicating whether the authentication token or the signature is valid.

The operation addToken takes several parameters in addition to the SOAP
message. The parameter tokenid can be either a user name (in the case of
user name tokens) or an identifier of an X.509 certificate (in the case of binary
tokens). The parameter tokentype is a URI that uniquely identifies the type
of the authentication token. The parameter encrypted specifies whether the
password should be encrypted in case of a user name token. It is ignored in the
case of an X.509 certificate.

The passwords for username tokens and for accessing a certificate from the
keystore are not passed to the operation addToken as parameter. Instead, they
are retrieved from the password store component of the security Web Service.
In this way, the deployer does not have to specify sensitive information such as
passwords in the deployment descriptor.

The parameters actor and timetolive appear in the signature of several op-
erations of the security Web Service. The parameter actor defines which role
is allowed to process the security header. The parameter timetolive defines a
validity period for the security header.

The operation checkToken verifies whether the authentication token that is
contained in the security header of a SOAP message is valid. The parameter
tokentype allows the security Web Service to find out which handler should be
used to validate the token (e.g., the X.509 handler). Without this parameter,
the security Web Service would have to parse the entire SOAP message to find
the corresponding handler.

The parameters of the operation signMessage have the following meaning:
The parameter algorithm specifies the algorithm that should be used to sign the
message. The parameter name identifies the key or certificate that should be
used to generate the signature. The parameter useSingleCert specifies whether
one certificate or a certificate chain should be used to generate the signature.
The parameter keyIndentifierType determines how the key or certificate that is
used to sign the message is referenced in the secured SOAP message.

In addition to the SOAP message, the operation checkSignature takes a
parameter called algorithm, which allows the security Web Service to find the
appropriate handler for verifying the signature without parsing the entire SOAP
message.

Secure conversation port type

Listing 7.7 shows the operations of the secure conversation port type. This
port type provides operations for establishing and canceling security contexts
using the Security Token Service (STS) of a partner Web Service. Moreover,
it includes operations for using a security context to encrypt messages, decrypt
messages, sign messages, and check signed messages.

In these operations, the parameter partner is an identifier for a security
context that is established between the client (e.g., the BPEL process) and the
Web Service (e.g., the partner). The parameter partnerSTSURI is the URI

129

of the Security Token Service (STS) of that Web Service. The security Web
Service interacts with the STS to create and to cancel a security context.

boolean createContext(String partner , String partnerSTSURI, String keyType,
String keySize , String signWith, Sring encryptWith,
String responseSignatureAlgo, String responseEncryptionAlgo,
String requestSignatureAlgo , String username)

boolean cancelContext(String partner , URI partnerSTSURI)
String signWithContext(String partner , String message,

boolean useDK, int generation)
boolean checkSignatureWithContext(String message)
String encryptWithContext(String partner , String message,

boolean useDK, int generation)
String decryptWithContext (String message)

Listing 7.7: The secure conversation port type

The operation createContext takes several parameters that allow an ad-
vanced and flexible configuration of the security context that will be created.
The parameters keyType and keySize respectively define the type and the length
of keys in the security context that will be established. The parameters sign-
With and encryptWith specify the signature and the encryption algorithms that
should be used for this context. The parameters responseSignatureAlgo and re-
sponseEncryptionAlgo specify whether the response of the Security Token Ser-
vice should be signed or encrypted and what algorithms to use for that. If the
request message to the Security Token Service has to be signed, the parameter
requestSignatureAlgo should be set to the name of the algorithm for signing
and the parameter username should specify the certificate that will be used for
signing.

The operations signWithContext and encryptWithContext take a parameter
useDK, which specifies whether derived keys should be used. These derived
keys are generated from the keys that were exchanged during context creation.
They make the interactions between the client and the Web Service more secure.
The generation of derived keys can be done in several steps and the parameter
generation specifies the step that should be used.

7.3.2 Usage by the process container

To secure a messaging activity, the process container intercepts the point where
the SOAP message corresponding to that activity is received or is about to
be sent out. In the AO4BPEL-based implementation of the container, this
interception is done by the cross-layer pointcut designators soapmessageout and
soapmessagin, which are used together with messaging activities. Then, the
container calls the appropriate operation on the security Web Service (the secure
messaging port type), which modifies or verifies the SOAP message according
to WS-Security. In the AO4BPEL-based implementation of the container, this
invocation is done by the advice activity.

In Figure 6.1, the container intercepts the execution of the invoke activ-
ity that calls the operation credit (arrow 2). Then, it calls the operation en-
cryptMessage on the security Web Service to encrypt the corresponding SOAP
message (arrow 3). The security Web Service returns the encrypted message to

130

the BPEL engine (arrow 4), which resumes the suspended invoke activity. The
latter sends the encrypted message instead of the original one (arrow 5).

Figure 7.4 illustrates how the container interacts with the security Web
Service to execute a structured activity and its nested messaging activities using
a secure conversation. In that figure, the process contains a sequence activity,
which has two nested invoke activities that interact with the same partner.

SWS
createContext
encryptWithContext

Process Container

<process>
...
<sequence>
<invoke operation=“A“/>
<invoke operation=“B“/>
</sequence>
...
</process>

<invoke operation=“A“/><invoke operation=“A“/><invoke operation=“A“/>
<invoke operation=“B“/>
<invoke operation=“A“/>

invoke operation=“B“/>
<invoke operation=“A“/>
<invoke operation=“B“/>

CreateContext
Aspect

EncryptWith-
Context
Aspect

<sequence><sequence><sequence><sequence><sequence><sequence><sequence>

e1, uri1

e1, SOAP, false, 0

e1, uri1

Partner

Aspects

Other Aspect
Types

Middleware Services

DestroyContext
Aspect

cancelContext
e1, SOAP, false, 0

</sequence></sequence></sequence>

encrypted SOAP

Security Token
Service

Figure 7.4: Interaction of the container and the security service

Figure 7.4 shows that three aspect types are involved in the execution of a
structured activity using a secure conversation: the aspect type for creating a
security context, the aspect type for destroying a context, and the aspect type
for encrypting a message with a context (cf. Table 7.1).

When the sequence activity starts, a container aspect calls the operation
createContext on the security Web Service. The parameter e1 identifies the
security context that should be established and the parameter uri1 is the URI
of the Security Token Service of the partner Web Service. Then, for each nested
invoke activity, another container aspect calls the operation encryptWithContext
on the security Web Service. This operation takes the context identifier e1 as
a parameter in addition to the SOAP message, a boolean indicating whether
a derived key should be used, and the generation step. When the sequence
completes, the process container calls the operation cancelContext to remove
the context e1.

7.3.3 The implementation

The security Web Service consists of three main components:

• The security manager is the central component of the security Web Ser-
vice. It manages the different handlers and stores that are available.

• The stores contain sensitive security information of a given type. There
is a store for passwords, a store for keys and certificates, and a store for
security contexts.

• The handlers provide the core functionality of the security Web Service.
For example, there is a handler for message encryption, a handler for

131

message signature, a handler for username tokens, etc. Through a config-
uration file, new handlers can be added easily to the security Web Service.

The implementation of the security Web Service is based on Apache WSS4J
[8], which is an Open Source implementation of WS-Security. WSS4J contains
the necessary interfaces for WS-Trust and WS-Conversation but it does not
provide any implementation of these interfaces.

To secure SOAP messages according to WS-Security, the handlers of the
security Web Service use methods of WSS4J, e.g., to encrypt or to sign mes-
sages. The implementation of the secure messaging port type with WSS4J was
straightforward.

To support secure conversations, it was necessary to implement a conver-
sation handler to tackle tasks such as context creation, context cancellation,
encryption with context, etc. That is the interfaces that WSS4J provides for
trust and secure conversation had to be implemented. In addition, it was nec-
essary to implement an Axis handler, which should be deployed at the partner
side. This handler processes the messages that were secured by the container
aspects using the secure conversation port type. The secure conversation port
type is implemented as follows.

When the operation createContext is called, the security Web Service stores
the parameters of that operation in a secureContextStore that is indexed by the
context identifier. Then, the security Web Service uses the secure conversation
handler to send a request to the Security Token Service (STS) of the partner
Web Service. If the STS can create a security context, it returns a positive
response that contains information about the created context and a unique
context identifier. The security Web Service stores this context information for
later use in the secureContextStore.

When the operation signWithContext or encryptWithContext is called, the
security Web Service retrieves the context information from the secureCon-
textStore using the parameter partner, which identifies the secure conversation
context. Then, it uses the algorithms and keys of that context together with
the encryption and signature methods of WSS4J to perform the necessary func-
tionality.

When the operation cancelContext is called, the secure conversation han-
dler sends a request message to the Security Token Service of the partner to
destroy the security context. Once the partner confirms that the context was
deleted, the security Web Service removes the corresponding entry from the
secureContextStore.

132

7.4 The Reliable Messaging Web Service

The reliable messaging Web Service4 provides operations to support the reliable
messaging requirements of the process activities, as shown in Listing 7.8.

7.4.1 The interface

The first three operations in the interface of this Web Service send a SOAP mes-
sage with a certain delivery assurance. They take three input parameters: the
SOAP message, the endpoint reference of the partner, and a boolean indicating
whether the messaging activity is a one-way or a request-response interaction.
To ensure the required delivery assurance, the SOAP message is sent by the
reliable messaging Web Service and not by the client.

String sendWithExactlyOnceSemantics(
String message, String endpoint, boolean inonly)

String sendWithAtMostOnceSemantics(
String message, String endpoint, boolean inonly)

String sendWithAtLeastOnceSemantics(
String message, String endpoint, boolean inonly)

boolean startNewSequenceWithExactlyOnce(
String [] end points ,boolean[] inonly , String seqId)

boolean startNewSequenceWithAtLeastOnce(
String [] end points , boolean[] inonly , String seqId)

boolean startNewSequenceWithAtMostOnce(
String [] end points , boolean[] inonly , String seqId)

String addToReliableSequence(String message, String seqId)

Listing 7.8: The interface of the reliable messaging Web Service

The subsequent three operations start a multi-party reliable messaging se-
quence with a certain delivery assurance. These operations support the ordered
delivery of messages to more than one endpoint. They take the following param-
eters: an array with the partner endpoints (i.e., the partners that are used by
the messaging activities), an array of booleans indicating the message exchange
pattern of each messaging activity, and a string identifier for the multi-party
reliable messaging sequence that will be created.

The operation addToReliableSequence is used to add the SOAP message
of a messaging activity to a previously created multi-party reliable messaging
sequence. This operation takes two parameters: the SOAP message and the
identifier of the reliable messaging sequence (previously created using one of the
operations startNewSequenceWith...).

7.4.2 Usage by the process container

To enforce a certain delivery assurance for a messaging activity, the process
container intercepts the internal join point where the SOAP request message
corresponding to that activity is about to be sent out. Then, the process con-
tainer passes that message to the reliable messaging Web Service by calling one

4This section is based on the Paper Reliable Messaging for BPEL Processes, ICWS 06 [42].

133

of the operations sendWith.... A container aspect with an around soapmessage-
out advice is used to call the reliable messaging Web Service because the join
point activity should not send the message once more.

Figure 7.5 illustrates how the process container interacts with the reliable
messaging Web Service to enforce the requirements of structured BPEL activi-
ties. In this figure, a sequence activity contains two one-way invoke activities for
interacting with two different partners. This figure shows that two aspect types
are involved in the execution of a structured activity with multi-party ordered
message delivery: the aspect type for starting a multi-party reliable messaging
sequence with a certain assurance and the aspect type for adding a message to
a multi-party reliable messaging sequence (cf. Table 7.2).

RMWS
startSequenceWith...
addToReliableSequence

Process Container

<process>
...

</sequence>
...
</process>

<invoke operation=“debit“/>
<sequence>

<invoke operation=“credit“/>

StartSequence-
ExactlyOnce

Aspect

AddToSe-
quence

<sequence><sequence><sequence>

id, [e1,e2], [true,true]

id, SOAP

id, SOAP

Partner 1 Partner 2

WS-RM

Aspects

Other Aspect
Types

Middleware Services

Figure 7.5: Interaction of the container and the reliable messaging service

To guarantee ordered message delivery for this sequence, a container aspect
calls the operation startNewSequenceWithExactlyOnce when the sequence activ-
ity starts. This operation takes the following parameters: the sequence identifier
id, the endpoints of the partners as an array [e1,e2], and an array of booleans
indicating that both activities are one-way interactions.

Then, for each invoke activity, an appropriate container aspect calls the
operation addToReliableSequence to send the SOAP message of that activity as
part of the ordered reliable messaging sequence id. The partner endpoint and
the message exchange pattern are not needed because they were already passed
to the reliable messaging Web Service at sequence creation time.

After the last call to the operation addToReliableSequence, the reliable mes-
saging Web Service terminates implicitly the multi-party sequence by using the
length of the array parameters that were passed at sequence creation. There-
fore, the process container does not have to call any operation on the reliable
messaging Web Service for sequence termination.

7.4.3 The implementation

The reliable messaging Web Service is based on Apache Sandesha [7], which is
an Open Source implementation of WS-RM [43].

The enforcement of a delivery assurance for a messaging activity using
Sandesha is straightforward. In contrast, the enforcement of multi-party or-
dered message delivery [42] is more challenging because both WS-RM and WS-

134

Reliability do not support reliable messaging between more than two endpoints.
In the following, the problems that arise when using WS-RM with more than
two endpoints are discussed. To solve these problems, three approaches for
multi-party reliable messaging are proposed and one of them is implemented in
the reliable messaging Web Service.

Problems in using WS-RM with more than two endpoints

To illustrate the problems that arise when using WS-RM with more than two
endpoints consider the following scenario: An endpoint A sends three messages
1,2,3 to two endpoints B and C. Message 1 and 3 should be delivered to the
endpoint B and Message 2 should be delivered to the endpoint C.

The messages should be received by B and C in the order in which they
were sent by A. That is, first Message 1 is received by B, then Message 2 is
received by C, and finally Message 3 is received by B. When using WS-RM for
this scenario, the following problems arise:

• Problem 1: Sequence creation and identification
The first problem is that the sequence creation message is sent only to
one receiver in WS-RM. In the current scenario, endpoint C has to be
informed about the sequence creation (in addition to B). Otherwise, C
will not be able to handle the messages of that sequence.

Even if both B and C receive sequence creation messages, there is still
another problem with the sequence identifier. B and C may produce dif-
ferent sequence identifiers, which leads to an ambiguous identification of
the sequence. Hence, the sender would not know which identifier to use
to relate a message to a certain reliable messaging sequence.

• Problem 2: Message numbering
Assume that Problem 1 is solved and that Message 2 arrives to C. Having
the first ever arriving message at C be numbered 2 breaks the following
invariant of WS-RM: The RM Source MUST assign each reliable message
a sequence number [...], beginning at 1 and increasing by exactly 1 for each
subsequent reliable message [43]. The constraint of incrementing message
numbers by one is also broken when Message 3 is sent after Message 1 to
endpoint B.

• Problem 3: Missing acknowledgment information
When endpoint B receives Message 3, it can acknowledge message recep-
tion but it does not know whether it can move that message from the
buffer to the application because it is waiting for Message 2, which will
never arrive.

• Problem 4: Sequence termination
Sequence termination messages should also be sent to all receivers (i.e., B
and C) and not only to one receiver, as WS-RM does. This is necessary to
ensure that all receivers free the resources that are allocated to the reliable
messaging sequence.

135

Three approaches to support reliable multi-party messaging

In the following, three approaches are proposed for supporting multi-party reli-
able messaging. Then, these approaches will be compared.

Approach 1: Extending the WS-RM protocol In this approach, minimal
extensions are introduced to the protocol of WS-RM to solve the four problems
mentioned earlier. These extensions require new logic at the sender and the
receiver.

To solve Problem 1, the sequence creation message must be sent to all re-
ceivers that take part in the ordered sequence. In WS-RM, the sequence iden-
tifier is generally defined by the receiver but the sender could also propose an
identifier by using the element /CreateSequence/Offer/Identifier in the se-
quence creation message. Once all receivers accept the identifier proposed by
the sender Problem 1 is solved.

However, the identifier suggested by the sender may be already in use by one
of the receivers. Consequently, that receiver refuses the proposal and returns
another sequence identifier in its CreateSequenceResponse message. To handle
this problem, the WS-RM protocol could be extended as follows: The sender
waits for the CreateSequenceResponse messages from all receivers. If one of
them contains a sequence identifier that is different from the one proposed by
the sender, the latter transmits a TerminateSequence message to all receivers.
Then, the sender restarts sequence creation by sending a CreateSequence mes-
sage with a different sequence identifier. This process is repeated until all re-
ceivers agree on the sequence identifier. To solve Problem 2, the numbering
invariant of WS-RM should be relaxed.

Next, some extensions to WS-RM are proposed to solve Problem 3. These
extensions are explained using the example scenario, in which A sends three
messages to B and C: Message 1 to B, Message 2 to C, and Message 3 to B.

Endpoint B receives Message 1 and 3. Once B receives Message 3 it ac-
knowledges Message 1 and Message 3 because the latter contains the lastMes-
sage element. B is not allowed to deliver Message 3 to the application as long
as Message 2 is not received. Therefore, B must put Message 3 into the buffer
to keep the messages in order. As Message 2 will be sent to C, B needs to know
that that message has been delivered successfully to C. However, since B is not
aware of C, B will never get this information. The only party which knows
whether a certain message has been acknowledged is the sender.

To solve Problem 3 from the perspective of B, the sender must forward the
acknowledgment received from C (for Message 2, with ackRequested element)
to B. After receiving that acknowledgment, B can deliver Message 3 to the
application because it knows that Message 2 was successfully delivered. The
acknowledgment forward message contains an additional ackRequested element,
which forces receiver B to acknowledge all received messages (1,3, and 2). Thus,
the sender can be sure that the acknowledgment forward is received by B.

From the view point of C the only message that arrives is Message 2. As
this message contains a lastMessage element, C acknowledges it immediately
and holds it in the buffer waiting for Message 1 that will never arrive. Here
again the sender must forward the acknowledgment of Message 1 received from
B to C with an additional ackRequested element. Once C receives this message,
it can deliver Message 2 to the application. C also acknowledges all yet received

136

messages. Thus, the sender can be sure that the acknowledgment forward mes-
sage is received by C.

In this extended version of WS-RM, if the sender waits passively for the
acknowledgment messages from the receivers then the whole sequence would be
blocked because the acknowledgment messages are usually sent after the last
message is received. The timing of acknowledgment messages depends also on
the configuration of the receivers. To improve performance, the sender should
pull acknowledgments from the receiver actively using the element ackRequested.

To solve Problem 4, the sender sends the sequence termination message to
all receivers. The sender should only send this message after it receives acknowl-
edgments for all messages of the multi-party reliable messaging sequence.

In Figure 7.6 the complete message exchange for the extended WS-RM pro-
tocol is shown. The sender suggests the sequence identifier 123. The sequence
creation message is sent to both endpoints B and C. Then the sequence mes-
sages are sent with Message 3 and Message 2 containing the lastMessage element.
When these messages are received, B and C acknowledge all received messages.
The sender forwards the acknowledgment of Message 1 and 3 to C and gets an
acknowledgment of Message 1, 2 and 3. Then the sender forwards the acknowl-
edgment of Message 1, 2 and 3 to B, which acknowledges all messages again.
Finally, A sends a TerminateSequence message to B and C.

CreateSequence[offer=123]

CreateSequenceResponse[seqId=123]

CreateSequence[offer=123]

CreateSequenceResponse[seqId=123]

Sequence[seqId=123, msgNo=1]

A B C

Sequence[seqId=123, msgNo=2, lastMsg]

Sequence[seqId=123, msgNo=3, lastMsg]

SequenceAcknowledgment[seqId=123, ack=1,3]

SequenceAcknowledgment[seqId=123, ack=2]

SequenceAcknowledgment[seqId=123, ack=1,3, ackReq]

SequenceAcknowledgment[seqId=123, ack=1,2,3]

SequenceAcknowledgment[seqId=123, ack=1,2,3, ackReq]

SequenceAcknowledgment[seqId=123, ack=1,2,3]

TerminateSequence[seqId=123]

TerminateSequence[seqId=123]

Figure 7.6: The extended reliable messaging protocol

137

Approach 2: Implementing the extension at the sender As explained
earlier, the main problem of reliable messaging with multiple receivers is the
lack of acknowledgment information. That is, the receivers cannot process the
messages instantly because they do not know if the preceding messages have
been already delivered to the other endpoints.

In WS-RM, the only party that is aware of this information is the sender,
which must coordinate the delivery of acknowledgment messages. This is done
by forwarding these messages in Approach 1.

In Approach 2, the main idea is that the sender splits a big sequence con-
taining messages going to different endpoints into subsequences, so that each
subsequence contains continuously numbered messages and involves two par-
ties: the sender and exactly one receiver. In this approach, a subsequence can
be sent using an ordinary WS-RM sequence because it involves two parties only.
Moreover, the subsequences are handled one after the other.

The sender needs to be extended with additional logic to split a sequence
into subsequences. It must wait for the completion of one subsequence before it
starts processing the next one. Therefore, the sender must buffer the remaining
messages of the sequence.

To understand the splitting mechanism, consider a scenario with the end-
points A, B, C and six messages M1 to M6. The required delivery order is as
follows: M1, M2, M5 to A, M3 to B, and M4 and M6 to C. The sender would
split the parent sequence into five subsequences: SS1 (M1,M2) delivered to A,
SS2 (M3) delivered to B, SS3 (M4) to C, SS4 (M5) to A, and SS5 (M6) to C.

CreateSequence[]

CreateSequenceResponse[seqId=123]

Sequence[seqId=123, msgNo=1, lastMsg]

SequenceAcknowledgment[seqId=123, ack=1]

TerminateSequence[seqId=123]

A B C

CreateSequence[]

CreateSequenceResponse[seqId=234]

Sequence[seqId=234, msgNo=1, lastMsg]

SequenceAcknowledgment[seqId=234, ack=1]

TerminateSequence[seqId=234]

CreateSequence[]

CreateSequenceResponse[seqId=345]

Sequence[seqId=345, msgNo=1, lastMsg]

SequenceAcknowledgment[seqId=345, ack=1]

TerminateSequence[seqId=345]

Figure 7.7: Extending the sender

138

Figure 7.7 depicts the simple scenario that was mentioned above with Mes-
sage 1 and 3 to B and Message 2 to C. This figure shows that there are three
subsequences. Each of them is handled with an ordinary WS-RM sequence that
is started when the previous sequence completes successfully.

The advantage of this approach is that the extension is implemented com-
pletely and only at the sender, which has the additional task of splitting the
sequence into subsequences. Each subsequence can be delivered by the ordinary
WS-RM protocol, because it involves exactly two endpoints. Moreover, the
configuration of the partner Web Services must not be changed because they
already support the WS-RM protocol.

Approach 3: Defining an entirely new protocol This approach defines
a new protocol, which is optimized for multi-party reliable messaging.

For solving Problem 1, the concept of implicit sequence creation of WS-
Reliability can be reused. The sender specifies a unique sequence identifier in
the first application message. When this message arrives, the receiver either
creates a new sequence or returns a fault if the identifier is already in use.

Problem 2 can be solved by using the idea of subsequences as explained in
Approach 2. A multi-party reliable sequence is decomposed into continuously
numbered subsequences that target exactly one receiver. Moreover, in this new
protocol, each message carries a subsequence number in addition to the sequence
number. Thus, a message is encoded as a triple (SequenceNumber, Subsequen-
ceNumber, MessageNumber), whereby the message number is unique only in the
context of its sequence number and its subsequence number.

For illustration, reconsider the simple scenario with the three endpoints A,
B, and C. In approach 3, the messages of this example would be numbered as
follows: Message 1 (S1, SS1, M1), Message 2 (S1, SS2, M1), Message 3 (S1,
SS3, M1).

In addition, the new protocol defines a new lastSubMsg element that the
sender should embed in the last message of a subsequence. This element has
a similar semantics to the element lastMessage of WS-RM. When the receiver
gets a message with this new element, it acknowledges all received messages of
the subsequence.

To solve Problem 3, the acknowledgment strategy can be taken either from
Approach 1 or from Approach 2.

First, the acknowledgment forward idea of Approach 1 can be integrated in
the new protocol by using a new ackForward message instead of the sequence
acknowledgment message of WS-RM. The ackForwad message contains all al-
ready acknowledged subsequence numbers and it will be forwarded by the sender
to all other receivers. The resulting message exchange for the simple example
of the three messages and the endpoints A, B, and C is shown in Figure 7.8.

Second, one could use the idea of Approach 2 to solve Problem 3. That is,
the sender processes each subsequence completely before proceeding with the
next one. In this way, each receiver can be sure that the preceding subsequences
were delivered successfully. Consequently, it can process all incoming messages
immediately. The advantage of this alternative is that message acknowledgment
forward is not needed. The disadvantage of this approach is that the messages
must be buffered at the sender until the previous subsequence is acknowledged.
This derivate of Approach 3 is called the blocking variant as opposed to the other

139

Sequence[seqId=123, subSeqId=1, msgNo=1, lastSubMsg]

Sequence[seqId=123, subSeqId=2, msgNo=1, lastSubMsg, lastMsg]

Sequence[seqId=123, subSeqId=3, msgNo=1, lastSubMsg, lastMsg]

A B C

Sequence creation

SequenceAcknowledgment[seqId=123, subSeqId/Ack=1/1,3/1]

SequenceAcknowledgment[seqId=123, subSeqId/Ack=2/1]

AcknowledgmentForward[seqId=123, subSeqId=2]

AcknowledgmentForward[seqId=123, subSeqId=1,3]

SequenceAcknowledgment[seqId=123, subSeqId=1,2,3]

SequenceAcknowledgment[seqId=123, subSeqId/Ack=1,2,3]

Sequence termination

Figure 7.8: The entirely new reliable messaging protocol (non-blocking)

non-blocking variant that was presented in the last paragraph. The message
exchanges for the simple scenario using the blocking variant of Approach 3 are
shown in Figure 7.9.

Problem 4 can be solved as in WS-Reliability using implicit sequence ter-
mination. The receiver terminates the sequence when the message with the
lastMessage element is received and all preceding messages have been received.
As there is more than one receiver, the lastMessage element must be put in the
last message that goes to each receiver.

Comparison Approach 3 is definitely the most complex solution but it has
the advantage of providing a completely redesigned reliable messaging protocol
that is optimized for multi-party conversations. In Approach 3, the usage of
new constructs such as the ackForward message raises the understandability
of the protocol. Moreover, mechanisms such as implicit sequence creation and
termination improve the efficiency.

Instead of defining a completely new protocol, Approach 1 defines the nec-
essary minimal extensions that make WS-RM support multi-party reliable mes-
saging. Approach 1 requires new logic to be added to both the sender and the
receiver.

Unlike Approach 1 and Approach 3, Approach 2 extends only the logic of
the sender. As the WS-RM protocol is unchanged, no configuration changes are
required for the partner Web Services that already support WS-RM. In fact,
partner Web Services are typically provided by other parties that would not
easily agree to change their configuration. Another advantage of Approach 2 is

140

Sequence[seqId=123, subSeqId=1, msgNo=1, lastSubMsg]

SequenceAcknowledgment[seqId=123, subSeqId/Ack=1/1]

Sequence[seqId=123, subSeqId=2, msgNo=1, lastSubMsg, lastMsg]

A B C

Sequence creation

SequenceAcknowledgment[seqId=123, subSeqId/Ack=2/1]

Sequence[seqId=123, subSeqId=3, msgNo=1, lastSubMsg, lastMsg]

SequenceAcknowledgment[seqId=123, subSeqId/Ack=3/1]

Sequence termination

Figure 7.9: The entirely new reliable messaging protocol (blocking)

that it can be easily implemented by reusing existing implementations of WS-
RM. For these reasons, the reliable messaging Web Service uses this approach
to support multi-party reliable messaging.

Implementing the reliable messaging Web Service

The reliable messaging Web Service is based on Approach 2. In the following
some details on the implementation of the different operations of that Web
Service are given.

When the container calls the operation startNewSequenceWith... to start
a reliable multi-party sequence, the reliable messaging Web Service stores the
information about the endpoint and message exchange pattern of each messaging
activity in a map with the sequence identifier parameter as key.

When the operation addToReliableSequence is called, the reliable messaging
Web Service loads the context for the multi-party sequence using the sequence
identifier. This context contains the number of the current message, which
is used to retrieve the corresponding message exchange pattern, the partner
endpoint, and the reliable messaging context provided by Sandesha.

If the current message exchange pattern differs from that of the next call
(which is a limitation of Sandesha), or the next endpoint differs from that of
the current call (which is a limitation of WS-RM), the reliable messaging Web
Service marks the current message as being the last of a subsequence and ter-
minates the reliable messaging context of Sandesha.

If the current message is not the last of the context5, a new reliable messaging
sequence is established and it is added to the context. If the current message
is the last of the whole sequence, the current reliable messaging sequence is
terminated and the context is removed from the map.

5This can be determined by comparing the current message number with the length of the
endpoint array.

141

7.5 The Transaction Web Service

The transaction Web Service provides operations to enforce the transaction
requirements of BPEL activities.

7.5.1 The interface

The transaction Web Service provides a port type for atomic transactions [137]
as shown in Listing 7.9.

boolean begin(String transactionID)
String participate (String transactionID , String soapMsg)
boolean commit(String transactionID)
void rollback (String transactionID)

Listing 7.9: The atomic transaction port type

The operation begin starts a new transaction and creates a new coordination
context as defined in WS-Coordination [63]. This operation takes a parameter
transactionID that is used to relate messaging activities to the created transac-
tion. The returned boolean signals if the creation of the transaction succeeded.

The operation participate allows a messaging activity to participate in a
previously created transaction. This operation takes the transaction identifier
and the SOAP message of the messaging activity as input parameters. It returns
the SOAP message after enhancing it with a transaction header that includes
the coordination context.

The operation commit runs the completion protocol of WS-AtomicTransaction
to commit the transaction that is passed as parameter. The operation rollback
rolls back the transaction.

7.5.2 Usage by the process container

To enforce the transactional requirements of a structured activity, the process
container intercepts the start and termination of that activity as well as the
execution of its nested messaging activities. At these points, the container calls
appropriate operations on the transaction Web Service.

Figure 7.10 illustrates the interaction of the process container and the trans-
action Web Service to execute the sequence activity debit credit as an atomic
transaction.

Four aspect types are involved in the execution of this sequence activity as an
atomic transaction: the aspect type for creating a transaction, the aspect type
for adding a message to a transaction, the aspect type for transaction commit,
and the aspect type for transaction roll back (cf. Table 7.3).

When the sequence activity starts, the begin transaction aspect calls the
operation begin on the transaction Web Service and uses the name of the parent
scope (the parameter id) of that sequence as a transaction identifier.

Then, for each invoke activity, a container aspect calls the operation partic-
ipate and passes the SOAP message of each activity as parameter in addition
to the transaction identifier. The transaction Web Service enhances that mes-
sage with a transaction header, which includes the coordination context of the
transaction that has the identifier id.

142

TXWS

participate
begin

Process Container

<process>
...
<sequence>
<invoke operation=“debit“/>
<invoke operation=“credit“/>
</sequence>
...
</process>

<invoke operation=“debit“/>
<invoke operation=“credit“/>

Begin
Aspect

Partner 1 Partner 2

Aspects Middleware Services

commit
Participate

Aspect

Commit
Aspect

<sequence><sequence>

</sequence>

id

id

id, SOAP

id, SOAP

SOAP + context

Rollback
Aspect

fault

rollback
id

Figure 7.10: Interaction of the container and the transaction service

When the sequence activity completes, a commit aspect calls the operation
commit on the transaction Web Service. Consequently, the coordinator of the
atomic transaction initiates the 2-Phase-Commit protocol to decide on the out-
come of the transaction.

When a fault is raised during the execution of a transactional activity (e.g., in
the execution of the invoke activity that calls the operation credit), a container
aspect catches that fault and calls the operation rollback on the transaction
Web Service to undo the transaction (as shown in Listing 7.3).

7.5.3 The implementation

The transaction Web Service consists of two main components: the coordination
framework, which implements WS-Coordination and WS-AtomicTransaction
and the transaction framework, which manages the transactions internally.

Apache Kandula [10] is used for the coordination framework. It is an Open
Source implementation of WS-Coordination and WS-AtomicTransaction on top
of Axis. Kandula provides a set of Web Services such as the activation ser-
vice, the registration service, and the coordinator. Apache Geronimo [9] is
used for the transaction framework. Apache Geronimo implements the package
javax.transaction.

When the operation begin is called, the transaction Web Service creates
a transaction object using the transaction framework. Moreover, it creates a
new distributed activity using the activation Web Service of Kandula. Then, it
stores the coordination context returned by the activation service in the created
transaction object, which is put into a map with the transaction identifier as
key.

When the operation participate is called, the transaction Web Service re-
trieves the transaction object from the map. Moreover, it enhances the SOAP
message parameter with the coordination context of that transaction.

When the partner Web Service receives the enhanced SOAP message, it
registers as participant for Durable2PC at the registration service. The latter
returns a reference to the coordinator.

143

When the operation commit is called, the transaction Web Service retrieves
the transaction object and uses Kandula to register for the completion protocol.
The registration service returns a reference to the coordinator, to which the
transaction Web Service sends a commit message. Once the coordinator receives
that message, it runs the 2-Phase-Commit protocol with all previously registered
participants. After that, either all participants commit or the transaction is
aborted. Finally, the transaction object is removed from the map so that the
respective transaction identifier can be used by other transactions.

7.6 Limitations of the Current Implementation

Some activities may require support for more than one non-functional concern.
For example, an invoke activity that requires confidentiality and exactly-once
semantics could also participate in an atomic transaction. In such a case, a
combined usage of the three middleware Web Services is necessary.

When transaction and security are combined, the security Web Service can
be called either before (e.g., to send an encrypted message with a plain coordi-
nation context header) or after the transaction Web Service (e.g., to encrypt a
message that was previously enhanced with a coordination context).

The other two combinations of reliable messaging with transaction or secu-
rity are not supported in the current implementation because of problems that
arise when Sandesha is used together with WSS4J or Kandula.

In fact, Sandesha and WSS4J cannot work together unless all messages of the
WS-RM protocol have security headers, because the message handler of WSS4J
discards all messages that do not have a security header. To solve this problem,
sequence creation messages and acknowledgment messages should have security
headers and not only the application messages. However, the protocol specific
messages of WS-RM are not accessible to the process container, which can only
intercept application messages.

Moreover, Sandesha and Kandula use WS-Addressing [25] handlers. Kan-
dula requires these handlers not only at the Web Service side but also at the
client side. When these handlers are added at the client side, Sandesha can no
longer send the messages of the WS-RM protocol because this causes an error
in the addressing handler. This problem is currently being addressed by the
developers of Kandula and Sandesha.

Another limitation of the AO4BPEL container is that aspects can be only
applied to application messages, i.e., it is not possible to use a container aspect
to send messages of the transaction protocols in a reliable way for example.
That is, the combination of transaction protocols with reliable messaging is
not supported. The transaction Web Service cannot use the reliable messaging
aspects because there is no possibility to define aspects on the middleware Web
Services.

144

7.7 Related Work

This Section first presents some research works that use aspects to modularize
middleware services and to implement light-weight containers. Then, it reports
on other works that address non-functional concerns in the context of Web
Service compositions.

7.7.1 Works on light-weight containers

The process container is inspired by the Spring framework [114], which uses
Aspect-Oriented Programming to provide J2EE services such as transaction
management to plain old Java objects (so-called POJOs). Spring AOP uses
method interception to insert custom behaviour before or after method invo-
cations. Together with Java 1.5 annotations, Spring can be used to provide
transaction support declaratively as the AO4BPEL process container frame-
work does for BPEL processes.

In [73], an approach to the design of component middleware frameworks
is presented. This approach, which is called Alice, combines Aspect-Oriented
Programming and annotations. In Alice, business logic is implemented in POJO
classes and the crosscutting middleware services are implemented using aspects.

The Java Aspect Components framework (JAC) [149] also uses aspects to
modularize the implementation of middleware services such as persistence and
transactions. The programmer works with POJOs and the middleware services
of EJB are replaced by loosely coupled dynamically pluggable aspect compo-
nents. JBoss AOP [27] is another aspect-based container framework, which
provides an aspect library for supporting non-functional concerns such as secu-
rity and transaction.

In [154], the container model is generalized to mobile computing environ-
ments, where applications join or leave the network spontaneously. Using dy-
namic AOP, a spontaneous container allows the nodes of a network to dynami-
cally acquire support for non-functional concerns such as transactions, orthog-
onal persistence, logging, and access control.

The process container framework is different from the works mentioned above
in several regards. First, the process container framework targets BPEL work-
flow processes whilst the works mentioned above target Java objects. Second,
AO4BPEL container aspects intercept join points across the process layer and
the SOAP messaging layer, rather than points in the execution of object-oriented
Java programs. Third, the process container framework is tailored to the spe-
cific requirements of BPEL workflows and to the Web Service middleware, which
operates on SOAP messages according to the WS-* specifications. Fourth, the
whole AO4BPEL process container is a set of aspects and there is no kernel as
in Alice or JAC. The BPEL engine itself can be seen as the kernel.

7.7.2 Works on non-functional concerns in BPEL

Colombo [58] is a light-weight platform for service-oriented applications, which
supports transactional, reliable, and secure Web Service interactions. The
messaging-level requirements are expressed indirectly by attaching policies to
local copies of the WSDL files of partner Web Services. At deployment time,

145

the policy component parses the policies that are attached to the different WS-
DLs and configures a handler chain for each incoming or outgoing message.

As already said, Colombo supports the messaging-level requirements of BPEL
activities. In a joint work with the group of the Colombo project, the author
of this thesis extended the Colombo platform with support for process-level re-
quirements by attaching external policies to BPEL processes [32]. To enforce
such requirements, the BPEL engine of Colombo was modified to notify the
policy component about various events in the process execution.

In [174], an approach to transactions in the context of BPEL compositions
is presented. This approach uses WS-Policy [113] and WS-PolicyAttachment
[45] to specify the transactional requirements of scopes and partner links.

To enforce the transactional requirements of the coordinated scopes and
partner links, the BPEL process, which is annotated with transaction policies,
is compiled to Java using a special compiler. The complied Java code uses an
implementation of WS-AtomicTransaction and WS-BusinessActivity to enforce
the transaction requirements of the BPEL scope. Both atomic transactions and
business activities are supported.

Whilst the purpose of the process container and the transaction Web Service
is also to support transactions in BPEL processes, there are several differences
between the AO4BPEL process container framework and the approach proposed
in [174] with respect to requirement specification and requirement enforcement.

With respect to requirement specification, WS-Policy is too declarative and
does not provide means to specify the necessary parameters for enforcing non-
functional requirements such as security keys and certificates (what and not
how), unlike the deployment descriptor of the AO4BPEL process container
framework.

Moreover, when using the internal policy attachment mechanism of WS-
PolicyAttachment as done in [174], one has to annotate each transactional ac-
tivity in the BPEL process with an appropriate transactional policy using the
WSDL extensibility attribute wsp:PolicyRefs. In contrast, the deployment
descriptor uses XPath-based activity selectors, which eliminates the need to at-
tach policies to BPEL activities in a point-wise fashion. Another advantage
of the deployment descriptor over the internal policy attachment mechanism is
the separation between the specification of the non-functional properties and
the specification of the functional composition (i.e., the BPEL process).

With respect to requirement enforcement, a special compiler is used in [174]
to generate a Java stub that contains the necessary calls to the transaction
middleware. As a result, it is not possible to exchange the transaction middle-
ware by another one or to integrate further middleware services such as security
and reliable messaging without changing the implementation of the compiler.
Such extensions are supported easily in the AO4BPEL container framework by
writing appropriate aspects.

Moreover, with WS-Policy based approaches such as [174], the logic for en-
forcing the transaction requirements is hidden, e.g., a coordination context is
implicitly created when a transactional scope starts. Thus, people who want to
extend the container cannot do that because they do not understand the inter-
action of the BPEL interpreter with the middleware services. They also cannot
understand the interactions and dependencies between the different middleware
services, e.g., which service is called before another. In the AO4BPEL-based

146

process container the logic for enforcing the non-functional requirements is avail-
able explicitly in container aspects.

In the context of security of BPEL processes, the work described in [29]
presents a brokered architecture for security conscious Web Service composition.
In that proposal, each Web Service describes its security constraints (using the
WSDL extensibility mechanism) and capabilities (using the Security Markup
Assertion Language (SAML)). Moreover, a security broker assigns specific Web
Services to the activities of a BPEL process by matching the requirements and
capabilities of the process with those of the partner Web Services. That work is
concerned only with the specification of the security requirements of the process
activities, but it is not concerned with the enforcement of those requirements,
unlike the AO4BPEL process container framework. Moreover, process-level se-
curity requirements such as secure conversations and federations are not ad-
dressed in that work.

In [21], Berbner et. al. address other non-functional properties in Web Ser-
vice composition such as cost, availability, and throughput. That work assumes
that there is a set of alternative Web Services with similar functionality for each
activity in the workflow process and that these Web Services have different QoS
properties. It presents a heuristic-based approach to solve the QoS-aware Web
Service composition problem, i.e., how to select Web Services so that the overall
QoS requirements of the workflow process are satisfied.

7.8 Conclusion

This chapter presented a modular and extensible implementation of the process
container using AO4BPEL aspects. In that implementation, container aspects
are generated automatically from the deployment descriptor using XSLT.

Moreover, three middleware services for BPEL were presented. These ser-
vices were implemented as Web Services to allow the AO4BPEL container as-
pects to call them. For each middleware Web Service, this chapter presented the
interface, the mode of interaction with the process container, and some imple-
mentation details. For implementing the middleware Web Services, open-source
implementations of WS-* specifications were reused and extended to support the
process-level requirements.

Chapter 5 has shown that AO4BPEL aspects improve the modularity of
BPEL processes and increase their flexibility. The current chapter has shown
that AO4BPEL aspects support the process-level non-functional requirements
of BPEL processes, which is an unsolved problem in all current BPEL imple-
mentations. The process container framework allows for secure, reliable, and
transactional BPEL processes. Thus, this framework enables Web Service based
production workflows.

The ultimate message of this chapter to BPEL implementors is: engines that
support AO4BPEL aspects provide not only modularity and flexibility but also
support for security, reliable messaging, and transactions.

147

CHAPTER 8

Implementing Business Rules with AO4BPEL

8.1 Introduction

This chapter1 presents a second application of AO4BPEL in the context of
business rules in BPEL processes.

Several business domains are inherently policy- and decision-intensive such
as the finance and insurance sectors. In these domains, an important part of
the business knowledge is available in the form of policies, recommendations,
and preferences. Business rules are declarative statements capturing that kind
of business knowledge.

When software applications are developed using object-oriented program-
ming languages or process-oriented workflow languages such as BPEL, the busi-
ness rules are embedded in the application code and they no longer exist ex-
plicitly as separate first-class entities. This poses several problems with respect
to modularity and flexibility. First, the business rules are intertwined with the
process business logic, which leads to complex processes that are hard to un-
derstand and to maintain. Second, the business rules cannot be reused across
different processes. Reusability is, however, crucial especially for organization-
wide business rules. Third, business rules cannot be changed independently of
the business process although they are the more volatile part of the composition
logic. Consequently, changing business rules involves expert programmers and
cannot be done by business analysts.

To solve these problems, this chapter proposes a hybrid composition ap-
proach that separates the business rules from the business processes. In this
approach, the core business logic is defined in the BPEL process, whereas deci-
sions and policies are defined in well-modularized and separated business rules.

To implement this hybrid approach, one needs a business rule implementa-
tion technology, a workflow engine for executing the processes, and a technology
for integrating the business rule implementation technology and the workflow

1This chapter is based on the paper Hybrid Web Service Composition: Business Processes
Meet Business Rules, ICSOC 2004 [35].

148

engine. In this chapter, AO4BPEL aspects are used for implementing the busi-
ness rules and the AO4BPEL engine is used as an integration technology for
the business rules implementation (i.e., the AO4BPEL aspects) and the business
process implementation (i.e, the BPEL process).

To the best of the author’s knowledge, the work presented in this chapter
is the first to address the problem of business rules in BPEL processes. One
year after presenting this work [35], research proposals such as the work pre-
sented in [159] and industrial products such as Oracle BPEL Process Manager
[143] adopted similar approaches. The Oracle BPEL Process Manager was in-
tegrated with the ILOG rule engine [109] and the process modeling tool ARIS
was recently integrated with Corticon’s business rules [107].

The remainder of this chapter is organized as follows. Section 8.2 defines
business rules and introduces the Business Rules Approach. Section 8.3 high-
lights the problems that arise when business rules are embedded in BPEL pro-
cesses. Section 8.4 presents a novel hybrid approach to Web Service composition
and its implementation with AO4BPEL. Section 8.5 reports on related work and
Section 8.6 concludes this chapter.

8.2 Business Rules

This section defines business rules and presents a classification schema for them.
Then, the Business Rules Approach is introduced and its principles are ex-
plained.

8.2.1 Definition

According to the Business Rules Group, “a business rule is a statement that
defines or constrains some aspect of the business. It is intended to assert business
structure or to control the behavior of the business” [177]. Business rules are
usually expressed either as constraints or in the form if conditions then action.

In the travel agency scenario used throughout this thesis, there are several
business rules that need to be integrated into the different BPEL processes, for
example:

• R1: if no flight is found for the dates given in the client request, do not
search for accommodation

• R2: if more than two persons travel together, the third one pays only half
price

A business rule system is a software system that puts special emphasis on
the expression, management, and automation of the rules. According to [177],
“a business rule system is an automated system in which the rules are sepa-
rated logically and perhaps physically from the other parts of the application”.
Business rule systems focus on the separation of rule-based knowledge through-
out the different phases of the software development cycle (analysis, design,
implementation).

The business rule engine is the main part of a business rule system. It
controls the selection and the activation of the business rules. The business rule
engine consists of three components:

149

• The knowledge base contains declarative business rules in the form if con-
ditions then action. It encapsulates the rule-based domain knowledge.

• The working memory is a store that contains the facts, on which the
business rules are defined. It includes the application data that will be
used to evaluate the rule conditions. The state of the working memory
may change when a rule action is executed.

• The inference engine decides which rules are ready to fire by applying the
rules of the knowledge base to the facts contained in the working memory.
The pattern matcher is a component of the inference engine that matches
rules with facts.

8.2.2 Classification

In lack of a standard classification for business rules, several classification pro-
posals have emerged [177, 186, 187]. In [186], four kinds of business rules are
distinguished:

• A constraint rule is a statement that expresses an unconditional circum-
stance that must be true or false, e.g., a vacation request must specify a
departure city and a destination city (R0).

• An action enabler rule is a statement that checks conditions and upon
finding them true initiates some action, e.g., if no flight is found for the
dates given by the customer, do not look for accommodation (R1).

• A computation rule is a statement that checks a condition and when the
result is true, provides an algorithm to calculate the value of a term, e.g.,
if more than 2 persons travel together, the third pays only half price (R2).

• An inference rule is a statement that tests conditions and upon finding
them true, establishes the truth of a new fact, e.g., if a customer is a
frequent customer, she gets a discount of 5 % (R3). This kind of rules is
also known as deduction or derivation rules.

8.2.3 The Business Rules Approach

The Business Rules Approach is a software development approach, in which
business rules are expressed in a declarative form and managed as separate
entities. This approach brings several benefits such as decoupling business rules
from the application code, making maintenance and changes easier, allowing
non-programmers to manage rules, and increasing rule reusability. The Business
Rules Approach has four so-called STEP principles [186]:

• Separate: Business rules must be separated from the rest of the applica-
tion.

• Trace: A connection should be maintained from the business rule to its
origin in the business organization (such as a business policy or a decision)
and to its implementation (i.e., all places in the implementation where the
rule is executed).

150

• Externalize: Business rules should be expressed in a form that business
people, which are generally non-programmers, can understand easily.

• Position: Business rules should be implemented using a technology that
supports easy and non-invasive changes.

8.3 Integrating Business Rules in BPEL

The only way to integrate a business rule with a BPEL process is by adding
appropriate activities, variables, and partners to that process. To do that, the
programmer can proceed as follows.

First, the programmer has to find the activities, the variables, and the part-
ners that are related to the rule condition. Then, at all activities that might
enable the rule condition, the programmer has to add a switch activity for eval-
uating the rule condition. The switch activity must contain a case branch with
the necessary activities for executing the rule action when the rule condition
evaluates to true. Moreover, it might be necessary for the programmer to add
partners and variables that are needed to evaluate the rule condition and/or to
execute the rule action.

In the following, the integration of some business rule examples with the
travel package process is illustrated. Then, the shortcomings of this integration
approach are discussed.

8.3.1 Examples

The travel package process that was presented in Chapter 3 is extended with
price calculation logic as shown in Listing 8.1. A sequence activity is added to
that process for price calculation (lines 46–53). This activity determines the
total price of a travel package offer by summing up the flight price and the hotel
price and multiplying that sum by the number of passengers. This sequence
activity contains an assign activity for setting the part totalprice of the variable
clientresponse, which is used by the reply activity (lines 54–55).

In order to integrate the action enabler rule R1 in this travel package process,
the programmer can proceed as follows. First, she finds the activities that
perform the flight search (this is the invoke activity on lines 25–27). Then,
she inserts a switch activity after that invoke and defines a case branch, which
uses the variable flightresponse to check whether a flight has been found. If
no flight is found, the programmer terminates the process instance by using
the terminate activity in the respective case branch. The programmer can also
throw some fault (using the throw activity) or send a message to the client (using
a reply activity) before terminating the process instance. The integration of the
constraint rule R0 can be done in a similar manner.

To integrate the computation rule R2 with the travel package process, the
programmer proceeds as described in the last paragraph. The number of pas-
sengers is available to the process immediately after the execution of the receive
activity (lines 16–18). This data is stored in the part numOfPassengers of the
variable clientrequest and does not change in the rest of the process. Then,
the programmer integrates the rule action into the process by adding a switch
activity after the price calculation activity. The switch activity should have a
case branch that executes if the part numOfPassengers is bigger than 2.

151

1 <process name=”travelPackage” .../>
2 <partnerLinks>
3 <partnerLink name=”client” partnerLinkType=”clientPLT” .../>
4 <partnerLink name=”flight” partnerLinkType=”flightPLT” .../>
5 <partnerLink name=”hotel” partnerLinkType=”hotelPLT” .../>
6 </partnerLinks>
7 <variables>
8 <variable name=”clientrequest” messageType=”findPackageRequest”/>
9 <variable name=”clientresponse” messageType=”findPackageResponse”/>

10 <variable name=”flightrequest” messageType=”findAFlightRequest”/>
11 <variable name=”flightresponse” messageType=”findAFlightResponse”/>
12 <variable name=”hotelrequest” messageType=”findARoomRequest”/>
13 <variable name=”hotelresponse” messageType=”findARoomlResponse”/>
14 </variables>
15 <sequence name=”packageSequence”>
16 <receive name=”receiveClientRequest” partnerLink=”client”
17 portType=”travelServicePT” operation=”getTravelPackage”
18 variable =”clientrequest” createInstance =”yes”/>
19 <assign>
20 <copy>
21 <from variable=”clientrequest” part=”deptDate”>
22 <from variable=” flightrequest ” part=”DepartOn”>
23 ...
24 </assign>
25 <invoke name=”invokeFlightService” partnerLink=”flight”
26 portType=”flightPT” operation=”findAFlight”
27 inputVariable =” flightrequest ” outputVariable=”flightresponse”/>
28 <invoke name=”invokeHotelService” partnerLink=”hotel”
29 portType=”HotelPT” operation=”findARoom”
30 inputVariable =”hotelrequest” outputVariable=”hotelresponse”/>
31 <assign>
32 <copy>
33 <from variable=”flightresponse” part=” flightDetails ”/>
34 <to variable =”clientresponse” part=” flightInfo ”/>
35 </copy>
36 <copy>
37 <from variable=”hotelresponse” part=”roomDetails”/>
38 <to variable =”clientresponse” part=”hotelInfo”/>
39 </copy>
40 <copy>
41 <from expression=”concat(getVariableData(’ flightresponse ’,’ flightnum ’),
42 getVariableData (’ hotelresponse ’,’ id’))”/>
43 <to variable =”clientresponse” part=”offerid”/>
44 </copy>
45 </assign>
46 <sequence name=”price calculation”>
47 <assign><copy>
48 <from expression=”(getVariableData(’ flightresponse ’,’ flightprice ’) +
49 getVariableData (’ hotelresponse ’,’ hotelprice ’))∗
50 getVariableData (’ clientrequest ’,’ numOfPassengers’)”/>
51 <to variable =”clientresponse” part=”totalprice”/>
52 </copy></assign>
53 </sequence>
54 <reply name=”replyToClient” partnerLink=”client” portType=”travelServicePT”
55 operation=”getTravelPackage” variable =”clientresponse” />
56 </sequence>
57 </process>

Listing 8.1: The extended travel package process

152

The body of the case branch should use an assign activity to recalculate
the price according to R2 and to modify the part totatprice of the variable
clientresponse.

Next, the integration of inference rules such as R3 is discussed. The condition
part of the rule R3 (if a customer is frequent) cannot be associated directly with
activities and variables as it is the case for R1 and R2. To decide whether a
customer is frequent, some additional computation and/or logical derivation is
needed, as elaborated below.

As an example for additional computation, one may need to call a customer
information Web Service that takes the customer id and returns the frequency
grade of the customer. It may also be necessary to do logical derivation together
with computation. For example, there may be another business rule R4, which
states that a customer, who has bought products for a total sum exceeding 4000
Euros is a frequent customer. In that case, resolving the condition of R3 would
require a call to the customer information Web Service to get the total value
of purchases of a customer. Moreover, the business rule R4 should be used to
derive whether the customer is frequent using the return data of the customer
information Web Service.

Assuming that only an additional computation is needed to resolve the con-
dition of R3, the programmer integrates R3 in the travel package process as
follows. After the price calculation activity, she adds a sequence activity that
contains an invoke to call the customer information Web Service and a switch
activity to decide whether a customer is frequent. She also has to add a partner
link to the customer information Web Service and two variables for holding the
input and output of the invoke activity that calls that Web Service. The switch
activity should have a case branch, which uses the output variable of that invoke
to decide whether the customer is frequent. This case branch uses an assign
for recalculating the price and modifying the part totalprice as explained for R2.

8.3.2 Problems

Considering the business rule examples R0 to R3 and the way they are integrated
in the travel package process, one observes that the problems of implementing
business rules in procedural and object-oriented languages [112, 69] also exist
in process-oriented workflow languages such as BPEL. These problems are:

1. Conditional statements are ordered into the application flow manually.
2. Rule identity is lost.
3. The impact of changing a single rule is not localized.

Two further problems are observed:

4. Business rules are expressed in a non-natural way.
5. It is not possible to change the business rules dynamically.

Problem 1 arises when one tries to integrate the business rules R1, R2, and
R3 with the travel package process. These rules have to be integrated manually
in the process flow using the conditional activity switch as explained above.
One also has to understand where and when to merge the conditional activities
with the process flow, e.g., the integration of R2 and R3 has to be done after

153

the price calculation activity. Moreover, one has to resolve the rule conditions
manually, which requires a thorough understanding of the whole process: which
activities implement a given functionality, which activities use or modify which
variables, which variables contain what data, etc. As the process of integrating
R3 indicated, resolving the condition part of inference rules is quite complex.

Problem 2 is caused by the lack of a module concept for expressing business
rules separately. The whole business logic underlying the Web Service compo-
sition is expressed in the BPEL process. Consequently, when business rules are
integrated in BPEL they are embedded in the process code. Thus, the Separate
principle of the Business Rules Approach is violated. Moreover, the business
rules loose their identity and no longer exist as first-class entities. Business
rules are valuable pieces of knowledge about the business. Therefore, it is in-
appropriate to bury that knowledge deep in code where no one can identify it
as such [186]. Due to the loss of identity, the Trace principle of the Business
Rules Approach is also violated, i.e., matching the business rules with their
implementation in the BPEL process becomes difficult.

Problem 3 arises because the Position principle of the Business Rules Ap-
proach is violated. This problem is tightly related to Problems 1 and 2. The
business rules cannot be changed easily because they are buried in the process
code and they do not exist as separate entities. To change a single business rule,
one has to find all places where a rule is buried in the process code and modify
them consistently and correctly.

For example, if the travel agency changes its discount policy, the programmer
needs to extract all the business logic related to discounts out of the different
workflow process specifications. Moreover, she has to integrate the new rules
or alter existing rules and ensure that each process is still working correctly.
Obviously, this requires understanding and changing the whole workflow process
specifications. Such an approach is inappropriate because business rules tend to
change more often than the rest of the application [15, 160]. As noted in [160],
“The most significant changes do not come from re-engineering the workflow,
but from rethinking rules”.

Problem 4 arises because business rules must be expressed in terms of BPEL
constructs (activities, variables, partners) before their integration into the pro-
cess code. Thus, they are not expressed in the declarative if/then form. The
Externalize principle of the Business Rules Approach is violated. Consequently,
non-programmers cannot understand and manage the business rules.

Problem 5 follows from Problems 2 and 3. As the rule implementation is
not decoupled from the process code, it cannot be changed dynamically. The
support for dynamic changes is a key requirement in the highly dynamic con-
text of Web Service composition. In fact, organizations that are involved in a
Web Service composition may often change their rules to react to changes in the
business environment, e.g., new regulations, new partnerships, changing strate-
gies, mergers, etc. Supporting the dynamic modification of business rules would
allow organizations to react more rapidly and adequately to such changes.

8.3.3 Discussion

The previous subsection illustrated the modularity and flexibility problems that
arise when business rules are embedded into the process code and explained how
the STEP principles of the Business Rules Approach are violated.

154

Problems 1,2, and 4 can be traced down to the lack of modularity in the
implementation of business rules. There is no module concept for encapsulating
the business rule implementation and separating it from the process. Conse-
quently, the implementation of a business rule is not only tangled with the
process logic, but may also be scattered across different processes (in the case
of crosscutting business rules).

For example, the rule R3, which gives a discount of 5 % to frequent cus-
tomers, is a crosscutting business rule. It spans several processes in the travel
agency scenario such as the travel package process and the flight process. Hence,
when the programmer tries to implement that business rule, she will have to
modify not only the travel package process as explained above, but also the
flight process. In addition, it might be necessary to add the implementation of
a business rule several times to the same process, e.g., in a more complex travel
package process where several activities are used for price calculation.

Implementing business rules affects in general sets of points in the execution
of several processes. The implementation of business rules cannot be modular-
ized because it cuts across the modular process-based structure of the travel
package process and the flight process. That is, business rules are also crosscut-
ting concerns. As BPEL does not provide concepts for crosscutting modularity,
the implementation of business rules leads to the tangling and scattering prob-
lems that were mentioned in Chapter 3.

To avoid these problems, business rules need to be encapsulated in separate
modules. Moreover, the decision about “where” and “when” to trigger the
evaluation of the rule condition and the execution of the rule action during the
execution of a BPEL process must also be encapsulated in a separate unit.

The flexibility problems 3 and 5 are related to the lack of modularity: if one
could break down the business logic underlying the composition into several
modules with well-defined interfaces, the composition becomes more flexible
because each module can evolve independently of the rest. With appropriate
tool support, well-modularized business rules can be activated, modified, and
deactivated at runtime.

8.4 Hybrid Web Service Composition

The previous section motivated the need for a modular implementation of busi-
ness rules in the context of Web Service compositions. However, a pure rule-
based approach to engineering Web Service compositions is also not appropriate
because understanding a composition that is defined using a multitude of busi-
ness rules is complex. Moreover, business rules are not suited for specifying
certain aspects of the Web Service composition such as control and data flow.

To solve the problems that were discussed in the last section, a hybrid
approach to Web Service composition is proposed. This approach combines
process-oriented Web Service composition with the Business Rules Approach.
The control and data flow between the Web Services of the composition are de-
fined primarily in the BPEL process, whereas decisions and policies are defined
in well-modularized and separated business rule modules.

In this approach, business rules are considered as parts of the internal im-
plementation of a composite Web Service. Thus, they are not visible to external
partners. They are also not intended to be published among partners.

155

Assuming a methodology for Web Service composition, which distinguishes
an analysis phase and an implementation phase, the idea of hybrid Web Service
composition is illustrated in Figure 8.1.

Rule-Process Integration Technology

workflow engine rule technology

executable
workflow process

Analysis

Implementation

business
process

declarative
business rule

rule
implementation

Figure 8.1: A hybrid approach to Web Service composition

The analysis phase is out of the scope of this work. The author merely
presumes that the Web Service composition is specified as a business process
and business rules are expressed in a declarative way in the analysis phase.

In the implementation phase, the separation between processes and business
rules is kept. This separation can be achieved by using an integration technology
that combines some workflow engine and some rule implementation technology,
as shown schematically in the bottom of Figure 8.1.

For the implementation of this hybrid approach, one has to select a concrete
workflow language for implementing the business process and a concrete rule
technology for implementing the business rules. For example, one could choose
BPEL and a compliant orchestration engine to implement the process. For
implementing the business rules, two alternatives will be discussed.

In the first alternative, the aspect-orientation paradigm is used for modular-
izing the implementation of business rules. As explained in the discussion, the
implementation of business rules tends to be crosscutting and aspects provide
means to modularize crosscutting concerns. Aspect-Oriented Programming has
been already found valuable for modularizing business rules in object-oriented
software [67]. Along the same lines, AO4BPEL aspects can be used for modu-
larizing business rules in BPEL processes.

In the second alternative, the idea is to combine the workflow language BPEL
with a rule-based language. This alternative would provide native business rule
support for BPEL processes in a similar manner to the support provided by rule-
based systems such as Jess [84] and JRules [108] to Java applications. At the
implementation level, this alternative requires the integration of a rule engine
with the BPEL orchestration engine. This alternative will not be implemented
in this work.

156

Independently of the chosen implementation alternative, a key point in the
hybrid composition approach is that business rules should be well-modularized
parts of the composition logic in the analysis and implementation phases as
shown in Figure 8.1.

8.4.1 Implementing business rules with AO4BPEL

Aspect-Oriented Programming is a suitable vehicle for modeling business rules
because of their crosscutting nature and also because of the similarities between
aspects and business rules.

In fact, aspects have the if/then flavor of business rules. An aspect basically
answers three questions: when/where and what : join points and pointcuts spec-
ify when and where crosscutting functionality should be executed during the
execution of the base program; the advice define what crosscutting functional-
ity to execute. Business rules also answer these three questions. The condition
part of the rule specifies when/where to execute the rule action (the what).

There is also an analogy between the base program in AOP and the work-
ing memory in the Business Rules Approach: conditions are statements over
the facts that are contained in the working memory like pointcuts, which are
statements over the static or dynamic structure of the base program. When
a pointcut matches a join point in the base program execution, the advice is
executed in a similar way to the rule’s action, which is executed when the rule
condition matches some facts in the working memory.

In the following, AO4BPEL aspects are used as a rule implementation tech-
nology and the AO4BPEL engine is used as an integration technology for the
BPEL engine and the business rule implementation. The implementation of the
different types of business rules with AO4BPEL will be illustrated using the
business rule examples R0 to R3.

Constraints

To implement a constraint rule in AO4BPEL, the programmer has to identify
the activities where the target data is modified, i.e., where the constraint may
be violated. For example, to implement the constraint rule R0 (a vacation
request must contain a departure city and a destination city) using an AO4BPEL
aspect, the programmer searches in the travel package process for the activities,
variables, and partners that are related to the condition part of R0. These are
the receive activity (lines 16–18), the partner client (line 3), and the variable
clientrequest (line 8).

Then, the programmer implements R0 using an AO4BPEL aspect as shown
in Listing 8.2. The pointcut of this aspect (lines 3–5) selects the receive activity
of the travel package process. An after advice (lines 6–14) is associated with
this pointcut. This advice uses a switch/case branch (lines 7–13) to terminate
the process if the constraint R0 is not fulfilled (line 11). In order to access the
variable clientrequest of the travel package process, the advice uses the context
collection construct ThisProcess(clientrequest) (lines 9–10).

In this implementation, the rule R0 is reformulated to “if the part deptcity
or the part destcity of the variable clientrequest is an empty string after the
completion of the receive then terminate the process”.

157

1 <aspect name=”R0”>
2 <pointcutandadvice>
3 <pointcut name=”receive request”>
4 //process[@name=”travelPackage”]//receive[@operation=”getTravelPackage”]
5 </pointcut>
6 <advice type=”after”>
7 <switch>
8 <case condition=
9 ”getVariableData(‘ThisProcess(clientrequest)’,’ deptcity ’)= ’’ or

10 getVariableData (’ThisProcess(clientrequest)’,’ destcity ’)= ’’”>
11 <terminate/>
12 </case>
13 </switch>
14 </advice>
15 </pointcutandadvice>
16 </aspect>

Listing 8.2: The constraint rule R0 as an aspect

The advice of all constraint rules can be built according to the pattern
shown in Listing 8.2. It consists of a switch activity that has a case branch with
a nested terminate activity to terminate the process if the constraint is violated.

1 <aspect name=”R1”>
2 <pointcutandadvice>
3 <pointcut name=”Berlin Air Invocations”>
4 //process[@name=”travelPackage”]//invoke[@operation=”findAFlight”]
5 </pointcut>
6 <advice type=”after”>
7 <switch>
8 <case condition=”getVariableData(
9 ’ThisProcess(flightresponse)’,’ findAFlightReturn’)= ’’”>

10 <!−− Here the action implementation of the action enabler −−>
11 <sequence>
12 <assign>
13 <copy>
14 <from expression=”’no flight is found for the selected dates’”>
15 <to variable =”clientresponse” part=” flightInfo ”>
16 </copy>
17 </assign>
18 <reply partnerLink=”client” portType=”travelServicePT”
19 operation=”getTravelPackage” variable=”clientresponse” />
20 <terminate/>
21 </sequence>
22 </case>
23 </switch>
24 </advice>
25 </pointcutandadvice>
26 </aspect>

Listing 8.3: The action enabler rule R1 as an aspect

158

Action enablers

To implement the action enabler rule (R1: if no flight is found for the dates
given by the client, do not look for accommodation), the programmer searches
for the activities, variables, and partners that are related to the condition part
of R1. These are the invoke activity that calls Berlin Air Web Service (lines
25–27), the variable flightresponse (line 11), and the partner flight (line 4).

The aspect that implements R1 is shown in Listing 8.3. The pointcut of this
aspect selects the invoke activity that calls Berlin Air Web Service. The after
advice of this aspect uses a switch activity with a case branch to test whether
the part findAFlightReturn of the variable flightreponse equals the empty string.
The case branch contains a sequence activity, which contains three activities:
an assign activity (lines 12–17) to set the message that will be returned to the
customer, a reply activity (lines 18–19) to send that message, and a terminate
activity (line 20) to terminate the process instance.

In this implementation, the rule R1 is reformulated to “if the response of
the flight Web Service equals the empty string then send a message to the client
and terminate the process”.

1 <aspect name=”R2”>
2 <pointcutandadvice>
3 <pointcut name=”price calculation”>
4 //process[@name=”travelPackage”]//sequence[@name=”price calculation”]
5 </pointcut>
6 <advice type=”after”>
7 <switch>
8 <case condition=
9 ”getVariableData(’ThisProcess(clientrequest)’,’ numOfPassengers’)>2”>

10 <!−− Here comes the action implementation of the computation rule −−>
11 <sequence name=”price recalculation”>
12 <assign>
13 <copy>
14 <from expression=”
15 ((getVariableData (’ThisProcess(clientresponse)’,’ totalprice ’) ∗ 2) /
16 getVariableData (’ThisProcess(clientrequest)’,’ numOfPassengers’)) +
17 (getVariableData (’ThisProcess(clientresponse)’,’ totalprice ’) /
18 (getVariableData (’ThisProcess(clientrequest)’,’ numOfPassengers’) ∗ 2) ∗
19 (getVariableData (’ThisProcess(clientrequest)’,’ numOfPassengers’)− 2)”/>
20 <to variable =”clientresponse” part=”totalprice”/>
21 </copy>
22 </assign>
23 </sequence>
24 </case>
25 </switch>
26 </advice>
27 </pointcutandadvice>
28 </aspect>

Listing 8.4: The computation rule R2 as an aspect

159

Computation rules

To implement the computation rule R2 (if more than two persons travel together,
the third pays only half price), the programmer proceeds as explained for R0
and R1. She finds that the receive activity of the travel package process is the
activity where the number of passengers becomes known. That information is
stored in the part numOfPassengers of the variable clientrequest and does not
change in the rest of the process.

The aspect that implements R2 is shown in Listing 8.4. The pointcut of
this aspect (lines 3–5) selects the price calculation activity in the travel pack-
age process. The action part R2 is implemented using an after advice, which
contains a switch with a case branch (lines 8–24) for recalculating the price
when more than two persons travel together. This case branch uses an assign
activity (lines 12–22) to write the new price to the part totalprice of the variable
clientresponse.

The algorithm alg for recalculating the total price according to R2 is as fol-
lows. Given x the already calculated total price and n the number of passengers,
the new price according to R2 is (2 * (x/n)) + ((n-2) * (x/2n)). This means
that 2 persons pay the full price x/n and the others (n-2) pay half price x/2n.

In this implementation, the rule R2 is reformulated to “if the part numOf-
Passengers of the variable clientrequest is bigger than 2 recalculate the total
price according to the algorithm alg and override the part totalprice of the
variable clientresponse with the new value”.

When implementing action enabler rules and computation rules, the choice
of the pointcut depends not only on the activities that are related to the rule
condition, but also on the rule semantics, the rule’s action, and the process
activities that are affected by that action. For this reason, the pointcut of the
aspect shown in Listing 8.4 does not select the receive activity where the number
of passengers becomes known, but rather the price calculation activity. This is
necessary because the price should be updated according to R2 after the price
calculation and not before that.

Inference rules

Inference rules are more difficult to implement, because resolving their condi-
tions requires logical derivation and/or additional computations. For example,
to implement the rule R3: if a customer is frequent, he/she gets a discount of
5 % , the programmer has to look for the activities, variables, and partners in
the BPEL process that are related to the rule condition, but she will not find
any.

Assume that there is another business rule R4, which specifies that if a
customer has bought products for a sum exceeding 4000 euros, she is a frequent
customer (R4). Thus, the condition part of the rule R3 can be resolved using
R4 and an additional computation that calls some customer information Web
Service to get the total of the previous purchases for a given customer. After
resolving the condition of R3, this rule can be written as an action enabler rule,
which can be implemented as explained for R2.

Listing 8.5 shows the aspect, which implements the rule R3. This aspect
declares the customer information Web Service as a partner (line 3) and two
variables (lines 6–7) for the input and output data of the invoke activity, which

160

calls that Web Service (lines 20–22). The pointcut of this aspect, which captures
the price calculation activity, is associated with an after advice that contains an
assign activity (line 16–19) for setting the input variable getTotalPurchasesIn
and an invoke activity for calling the operation getTotalPurchases on the cus-
tomer information Web Service (lines 20–22). For implementing the action part
of R3, a switch activity (lines 24–35) recalculates the price in a similar manner
to the advice of R2.

This aspect shows that the advice of aspects that implement inference rules
such as R3 contain activities for resolving the rule condition, whereas the advice
of aspects for the other rule types contain only activities that implement the
rule action.

1 <aspect name=”R3”>
2 <partners>
3 <partner name=”customerInfo” partnerLinkType=”cInfoPLT” .../>
4 <partners>
5 <variables>
6 <variable name=”tPurchasesIn” messageType=”getTPRequest”/>
7 <variable name=”tPurchasesOut” messageType=”getTPResponse”/>
8 </variables>
9 <pointcutandadvice>

10 <pointcut name=”price calculation”>
11 //process[@name=”travelPackage”]//sequence[@name=”price calculation”]
12 </pointcut>
13 <advice type=”after”>
14 <sequence>
15 <!−− condition resolution −−>
16 <assign><copy>
17 <from variable=”ThisProcess(clientrequest)” part=”customerId”>
18 <to variable =”getTotalPurchasesIn” part=”customerNr” >
19 </copy></assign>
20 <invoke name=”invokeCIWS” partnerLink=”customerInfo”
21 portType=”cInfoPT” operation=”getTotalPurchases”
22 inputVariable =”tPurchasesIn” outputVariable=”tPurchasesOut”/>
23 <!−− action implementation −−>
24 <switch>
25 <case condition=
26 ”getVariableData(’ tPurchasesOut ’,’ total ’) > 4000”>
27 <assign>
28 <copy>
29 <from expression=”
30 getVariableData (’ThisProcess(clientresponse)’,’ totalprice ’)∗0.95”/>
31 <to variable =”clientresponse” part=”totalprice”/>
32 </copy>
33 </assign>
34 </case>
35 </switch>
36 </advice>
37 </pointcutandadvice>
38 </aspect>

Listing 8.5: The inference rule R3 as an aspect

161

The implementation of R3 using an aspect would be more difficult if there
were other rules specifying when a customer is frequent, e.g., if there is another
rule R5: if a customer has bought more than 5 travel packages, she is a frequent
customer in addition to R4. If R4 and R5 were inference rules resolving R3
would be more complex.

Discussion

The examples presented so far show that the four types of business rules can be
implemented with AO4BPEL aspects in a modular way. In the analysis phase,
business rules are expressed declaratively. Thus, the Externalize principle of
the Business Rules Approach is supported. In the implementation phase, each
business rule is mapped to an aspect that is defined in a separate file. Thus,
the Separate principle of the Business Rules Approach is fulfilled. Moreover, the
Trace principle can be supported by having a mapping between the business rule
and the aspect that implements it. As the business rules are well-modularized in
aspects, they can be changed easily and the impact of changing them is localized.
Hence, the Position principle of the Business Rules Approach is supported.

When using AO4BPEL as an implementation technology for business rules,
four of the five problems that were mentioned above are solved.

Problem 2 is solved as the business rules do not loose their identity, neither
in the analysis phase nor in the implementation phase. Problem 3 is solved as
the business rules are encapsulated in separate aspect modules and they can be
changed easily. Problem 4 is solved because the business rules are expressed in a
declarative form in the analysis phase. Problem 5 is solved since the AO4BPEL
engine supports the dynamic composition of aspects and processes.

Problem 1 remains unsolved because the implementation of the business
rules with AO4BPEL requires programmer knowledge. In fact, the programmer
has to understand the BPEL process and how the rule affects it (which activi-
ties, variables, and partners are related to the business rule, where to test the
condition, which process activity should be the pointcut, how to implement the
action, etc). However, it should be possible to have a tool that generates the
business rule aspect from a high-level declarative specification of the business
rule, because the advice of these aspects follow well-defined patterns. In this
way, Problem 1 will be solved.

Nevertheless, even if the business rule aspects are generated automatically,
the user would not have support for rule management. Tasks such as handling
rule dependencies, checking rule consistency, combining rules, solving rule con-
flicts, and handling inference rules would still have to be done manually. For
instance, if there are two business rule aspects for Ra: if A then B and Rb: if
B then C, the user will have to manually derive the rule Rc: if A then C.

To solve these problems, a rule engine should be used. The rule engine not
only generates the rule implementation, but also controls the activation and
execution of the business rules, manages the rule dependencies and conflicts,
and handles logical inference. Thus, it relieves the user from managing the
business rules and let her focus on the implementation of the BPEL process.

162

8.4.2 Issues in using a rule engine

The second alternative for implementing business rules in BPEL processes con-
sists in using a rule engine that is integrated with the orchestration engine.
Such a hybrid system is not in the scope of this thesis work. In what follows,
some issues that should be considered when undertaking such an endeavor are
presented shortly.

At the language level, BPEL should be integrated with a rule-based lan-
guage in a similar approach to the one taken by systems such as Jess [84] and
JRules [108], which integrate the object-oriented language Java with rule-based
languages.

This integration can be achieved by extending the rule-based language with
BPEL constructs. In this way, activities, partners, and variables can be used
in the condition and/or action of the business rule. Extending BPEL with
features of the rule-based language is not an option because this would inhibit
the portability of BPEL processes.

The integration of a rule-based language with BPEL will, however, confront
BPEL programmers with a paradigm mismatch as they will have to understand
and use constructs of a rule-based language. In this regard, an implementation
of the hybrid composition approach by a hybrid system integrating a rule-based
language with BPEL is inferior to the aspect-based implementation.

In fact, using AO4BPEL to implement the business rules as discussed above
has the advantage of consistency for process programmers. Thus, the verification
of the properties of the resulting Web Service composition can be done more
easily because the same paradigm is used for the specification of the process and
the business rules, i.e., BPEL activities are used for implementing the process
and the advice of the business rule aspects.

Aspects may be useful even for the integration of a rule-based language
with BPEL. As argued in [68], hybrid systems that integrate object-oriented
programming and rule-based reasoning lack seamless integration. For a better
integration of both paradigms, hybrid aspects were introduced [69]. A similar
approach to hybrid aspects in the context of BPEL and rule-based languages is
probably worth considering.

At the implementation level, the rule engine needs to be integrated with
the BPEL orchestration engine. This can be done in two ways: by calling the
business rule engine explicitly from inside the BPEL process, or by wrapping
the business rule engine around the BPEL orchestration engine.

This first alternative was implemented recently in Oracle BPEL process
Manager [142], which allows the BPEL process to access the rule engine and
invoke rules. To do that, a special decide activity is used and the rules are
exposed as a decision service.

The second alternative can be implemented by extending the orchestration
engine with a component that updates the working memory of the rule engine
according to the process execution. Once a rule matches, the control should be
passed over from the orchestration engine to the component of the rule engine,
which is responsible for executing the rule action. After that, the control should
be returned to the orchestration engine to proceed with the execution of the
process.

163

8.5 Related Work

In [200], a rule-based approach to the development of Web Service compositions
is presented. The objective of that work is to make the life cycle of Web Ser-
vice composition development more flexible. In that approach, several phases
are differentiated, such as abstract definition, scheduling, construction, execu-
tion and evolution. That approach proposes specifying the composition using
a process-oriented language such as BPEL. Unlike the work presented in this
chapter, it considers only business rules that are related to the development
process of a Web Service composition (e.g., business rules for resource selection
or runtime constraints) and not business rules that are part of the composition
logic.

In [47], AspectJ aspects are used to encapsulate the connection of the busi-
ness rule to the core application. This connection denotes the events that trigger
the business rules in the execution of the core application and the necessary data
to execute these rules. In a similar way, AO4BPEL aspects modularize the con-
nector code of the business rules to the BPEL process.

In [67], a survey of current approaches to the integration of object-oriented
languages and rule-based languages is presented. That survey revealed that
both paradigms are not well integrated and that the programs written using
those approaches are tightly coupled. To solve these limitations, hybrid aspects
are proposed. Hybrid aspects are characterized by two join point models: one
for the object-oriented language and one for the rule-based language, and hybrid
advice, which can activate a rule or call a method. Moreover, hybrid aspects
provide a generic way for passing context from one language to the other in a
unified way.

As already mentioned, it is worthwhile to investigate in how far the aspect-
based integration approach presented in [67] can be adopted to the needs of
business rules in the context of Web Service compositions. Supporting hybrid
aspects in AO4BPEL can be achieved by defining appropriate extensions to the
join point model and advice language.

In [49], Cilia et. al. compare Event Condition Action rules (ECA) in the area
of active databases with aspects in AspectJ and identify several commonalities.
However, business rules are quite different from ECA rules, because business
rules do not require a database. Business rules are present in other contexts
such as object-oriented applications and workflow management systems [20].
They also come in various flavors either as production rules, integrity rules in
SQL, ECA-rules, logic rules like in Prolog, etc. ECA rules are not adequate to
express inference rules.

In the following, some more recent research works on business rules in Web
Service composition are presented shortly.

In [48], Cibran et. al. present example categories of business rules that are
applicable in the context of Web Service composition. In that work, business
rules are implemented using the JAsCo language, which is an extension to Java.
JAsCo supports stateful pointcuts, which allow the implementation of business
rules based on the execution history. Moreover, JAsCo supports dynamic weav-
ing, which allows the aspects implementing business rules to be pugged in and
out. The interesting feature of this work is that temporal relationships can be
used to express the rule condition. The major limitation is however, that JAsCo
aspects work only with Java, i.e, they cannot be used for integrating business

164

rules in BPEL, which is the standard for Web Service composition.
In [159], a service-oriented approach to integrating business rules in BPEL

processes is presented. That proposal uses a rule interceptor service, which
intercepts incoming and outgoing messages that come from or go to the BPEL
engine, and calls a business rule broker to apply the business rules. The mapping
of business rules to BPEL activities is defined by the BPEL programmer in
an XML mapping document, which specifies before and after interceptors for
certain process activities. In this approach, the working memory of the rule
engine is not updated when the process executes. Moreover, rule inference is
not supported. As this approach is based on intercepting SOAP messages, it can
be used only for business rules that affect messaging activities, unlike AO4BPEL
business rule aspects, which can be triggered by any BPEL activity.

The idea of hybrid systems integrating business processes and business rules
has been incorporated recently in several commercial products such as Oracle
BPEL Process Manager and the process modeling platform ARIS.

In 2005, Oracle BPEL Process Manager has been extended with support
for business rules [142]. In a first stage, it was integrated with ILOG’s JRules
rule-based system, which includes a rule editor, a rule builder, a rule debugger,
etc [109]. In a later stage, Oracle BPEL Process Manager will be integrated
with a new and native business rule engine that will be developed by Oracle as
part of a future release of Oracle Fusion Middleware.

In May 2006, IDS Scheer and Corticon announced that Corticon Studio,
which is a rule-based system, was integrated with the ARIS platform for process
modeling [107]. Unlike ILOG JRules, which are specified in a technical language,
Corticon rules are specified in a graphical way. Therefore, Corticon rules are
well-suited for complementing the graphical process specifications of ARIS.

8.6 Conclusion

This chapter presented a second application of AO4BPEL in the context of
business rules in BPEL processes. In this application, a hybrid approach to
Web Service composition was proposed to separate business rules and their
implementation from the business process and the BPEL workflow process that
implements it.

In the analysis phase, business rules are expressed declaratively and the
business process is specified at a high abstraction level. In the implementation
phase, the process is specified using a workflow language such as BPEL and the
business rules are implemented with some technology that needs to be integrated
appropriately with the BPEL orchestration engine.

Driven by the similarities between business rules and aspects and also by
the crosscutting nature of business rules, the hybrid composition approach was
implemented using AO4BPEL aspects. This chapter has shown how the four
types of business rules can be implemented in AO4BPEL. In addition, it ex-
plained how this aspect-based implementation fulfills the STEP principles of
the Business Rules Approach. Thus, business rules, which embody valuable
business knowledge, are no longer buried and hidden in the BPEL process code.
Moreover, as AO4BPEL supports dynamic composition, business rules can be
changed at runtime.

165

CHAPTER 9

Conclusions

9.1 Summary

The objective of this thesis was to solve the problems of current workflow lan-
guages with respect to crosscutting concern modularity and change modularity
and to design and implement a workflow language, which incorporates that
solution.

After implementing examples of crosscutting concerns in a travel agency
scenario with a visual graph-based workflow language and the BPEL language,
scattering and tangling problems were observed. The lack of constructs for mod-
ularizing crosscutting concerns leads to complex workflow process specifications
that are hard to understand, to maintain, to reuse, and to change.

Moreover, a study on the expression of workflow changes in static and adap-
tive workflow management systems revealed that these systems lack a module
concept for encapsulating the workflow constructs that implement a workflow
change and the decision about where and when the change should be applied. In
addition, these systems do not support workflow changes as first-class entities.
Consequently, understanding, tracing, and managing workflow changes becomes
a complex task.

The central thesis of this work is that Aspect-Oriented Software Development
can be applied in the context of workflow languages to solve the problems that
were mentioned above.

After studying the decomposition mechanisms of current workflow languages,
this thesis proposed a concern-based decomposition of workflow process specifi-
cations. This decomposition technique is incorporated in a new type of workflow
languages that are called aspect-oriented workflow languages. These languages
introduce concepts from Aspect-Oriented Software Development to workflow
languages and provide means to modularize crosscutting concerns and workflow
changes.

To illustrate the concepts of aspect-oriented workflow languages, this thesis
presented aspectual workflow graphs, which are an extension to the graph-based

166

language that was mentioned above with constructs that represent graphically
aspect-oriented concepts such as pointcuts and advice. Aspectual workflow
graphs are a first effort toward aspect-oriented workflow modeling.

Moreover, this thesis presented several requirements on the join point mod-
els, pointcut languages, advice languages, and composition mechanisms of aspect-
oriented workflow languages. It also presented the design and implementation
of AO4BPEL, which can be considered as a proof-of-concept for aspect-oriented
workflow languages.

To show the usefulness of workflow aspects, this thesis explained through
several examples how workflow aspects allow to modularize crosscutting con-
cerns and workflow changes. In addition, two applications of AO4BPEL were
presented:

The first application introduced a process container framework, which sup-
ports the specification and enforcement of non-functional requirements in BPEL
such as security, reliable messaging, and transactions. In this application, an
automatically generated AO4BPEL-based process container enforces the non-
functional requirements of the process activities by calling dedicated middle-
ware Web Services. This application not only demonstrates the usefulness of
AO4BPEL aspects, but also provides support for process-level non-functional
requirements in BPEL such as secure conversations, multi-party ordered mes-
sage delivery, and transactional structured activities.

In the second application, AO4BPEL aspects are used to implement the dif-
ferent types of business rules according to the principles of the Business Rules
Approach. In this aspect-based implementation, business rules are separate,
traceable, easy to change, and first-class pieces of business knowledge.

The following conclusions can be drawn from the experiences that were
gained during this PhD work.

• The aspect-orientation paradigm is not only applicable in the context of
programming languages, but also in other contexts such as workflow mod-
eling and workflow specification.

• Workflow aspects allow the modularization of several crosscutting con-
cerns, which range from simple ones such as data collection for billing and
activity execution time measurement to more complex concerns such as
security, reliable messaging, and transactions.

• Aspects can be used for expressing workflow changes in a modular way.
They encapsulate all workflow constructs that implement a certain change
as well as the decision about when and where the change should be applied
during the process execution. Moreover, in aspect-aware workflow engines,
workflow changes are treated as first-class entities, which eases change
management significantly.

• AO4BPEL and its applications show that aspect-oriented workflow lan-
guages are feasible and useful. This is also confirmed by recent proposals
for aspect-oriented workflow languages such as Padus [26].

• Through the dynamic composition mechanism of the AO4BPEL engine,
aspects allow to change BPEL processes dynamically. This shows how

167

the modular expression of workflow changes together with an appropri-
ate composition mechanism enhance the flexibility of workflows. Thus,
AO4BPEL aspects make BPEL processes more flexible and adaptable at
runtime, which is especially important in the highly dynamic context of
Web Services.

• The concepts of aspect-oriented workflow languages are generic. Aspec-
tual workflow graphs illustrate these concepts visually and independently
of any specific language. AO4BPEL is not the aspect-oriented workflow
language but rather one aspect-oriented workflow language.

• Whereas aspect-oriented workflow languages and aspect-oriented program-
ming languages define similar constructs, they differ in their join point
models, pointcut languages, advice types, and advice languages. More-
over, the composition mechanisms of aspects and processes in aspect-
oriented workflow languages are also different from the weaving mecha-
nisms that are used in aspect-oriented programming languages.

• When designing an aspect-oriented extension to an existing workflow lan-
guage, the constructs of the base workflow language must be understood
in depth. In particular, the effect of aspects on language mechanisms such
as fault handling and compensation handling should be defined carefully.

• The process container framework shows that container architectures are
applicable in workflow management. The process container enables BPEL-
based production workflows by supporting non-functional requirements
such as security, reliable messaging, and transactions. Moreover, the
aspect-based implementation results in a light-weight, modular, open, and
extensible container.

In addition, the process container framework shows that AO4BPEL as-
pects can be used as an internal implementation technology that the frame-
work end users do not have to know about.

• The aspect-based implementation of the hybrid approach to business rules
in Web Service compositions shows that AO4BPEL can implement all
types of business rules in a separate and modular way according to the
principles of the Business Rules Approach.

9.2 Future work

In the following, some directions for future work are outlined. They span three
different areas: aspect-oriented workflow languages, AO4BPEL and its imple-
mentation, and AO4BPEL applications.

1. Works on aspect-oriented workflow languages

BPEL is a domain-specific workflow language, which is tailored to Web
Service based workflows. It lacks typical workflow concepts such as hu-
man participants (the organizational perspective) and external applica-
tions (the operational perspective). Like AO4BPEL, the recent Padus
language [26] is also an aspect-oriented extension to BPEL. A possible

168

direction for future work is to define and implement aspect-oriented ex-
tensions to more typical workflow languages.

2. Works on AO4BPEL
The AO4BPEL language can be improved in several regards as explained
in the following.

• Extensions to the pointcut language
The pointcut language of AO4BPEL can be extended with support
for XQuery in addition to XPath. Currently, perspective-oriented
pointcut expressions such as //partner and //variable are handled
internally by the AO4BPEL engine, which transforms them into
activity-based pointcut expressions. As already shown in the work
of Eichberg et. al. [74], XQuery would make the pointcut language
of AO4BPEL more open and extensible so that AO4BPEL program-
mers can define their own pointcut designators by using appropriate
XQuery functions.
Currently, the pointcut language of AO4BPEL does not support tem-
poral pointcuts such as when activity a is executed after activity b.
These pointcuts are needed, e.g., in Web Service composition man-
agement aspects, which express crosscutting functionality such as
when an activity invokes a partner P and the previous invocation of
that partner has failed then use an alternative partner Web Service.
AO4BPEL can be extended with constructs that allow the expres-
sion of temporal relationships between the activities. A logic-based
approach such as the one adopted in ALPHA [147] will work also for
AO4BPEL.

• Extensions to the advice language
The advice language of AO4BPEL can be extended with a construct
for deploying other aspects. This is especially important for sup-
porting self-adaptive and self-healing BPEL processes, where some
monitoring aspects deploy other adaptation aspects dynamically to
ensure some policies or some service level agreements.
For example, an AO4BPEL monitoring aspect may wait for the re-
sponse of a partner Web Service for a predefined period of time. If
the response is not received after that period, the monitoring aspect
deploys a redirection aspect to replace the bad performing partner
by an alternative partner Web Service.

• AO4BPEL update to support WS-BPEL 2.0
The AO4BPEL language can be updated according to the new WS-
BPEL 2.0 standard of OASIS. The implementation of AO4BPEL for
WS-BPEL 2.0 can be based on Open Source BPEL engines such as
ActiveBPEL 2.0 [127], which already supports most elements of the
WS-BPEL 2.0 standard.

3. Works on AO4BPEL applications
Further applications of AO4BPEL can be considered, e.g., in the context
of Web Service composition management and in self-adaptive and self-
healing systems. In addition, the two applications presented in this thesis
can be improved in several ways.

169

• Extensions to the process container framework
The process container framework can be enhanced with a policy man-
agement component for supporting policies. Currently, the policies
of the partner Web Services are not taken in consideration when the
BPEL process is deployed. For example, it is possible that the de-
ployment descriptor of some process requires authentication through
X.509 certificates, whereas the partner Web Service supports only
username tokens. In such a scenario, the process will be deployed
successfully but at runtime a fault will be raised when the partner
Web Service is called.
To avoid such mismatches, the process deployer has to check the poli-
cies of the partner Web Services and ensure that they are compatible
with the deployment descriptor. A better solution would be to auto-
mate these checks by supporting policy-based process deployment. In
this advanced deployment concept, a policy management component
checks automatically whether the requirements specified in the de-
ployment descriptor are compatible with the policies of partner Web
Services. This component should detect conflicts and incompatibili-
ties and signal them to the deployer. It may also assist her in solving
them.
The BPEL middleware Web Services can also be extended. The
transaction Web Service can be extended with support for business
activities as soon as the support for WS-BusinessActivity is com-
pleted in Apache Kandula. The security Web Service can also be
extended with support for federation [3].

• Extensions to the hybrid Web Service composition approach
This thesis explained how the different types of business rules can
be implemented using AO4BPEL aspects. So far, the aspects imple-
menting business rules are written manually. One could investigate
to what extent these aspects can be generated automatically as al-
ready done for the process container aspects. Moreover, one can use
aspects as part of the container to integrate the process execution by
the workflow engine with a business rule engine.
Another possible extension to this approach would be the design and
implementation of hybrid AO4BPEL aspects to integrate a rule-based
language with BPEL, in a similar approach to [69].

170

Bibliography

[1] Gustavo Alonso, Divyakant Agrawal, Amr El Abbadi, and C. Mohan.
Functionality and Limitations of Current Workflow Management Systems.
IEEE Expert,Special Issue on Cooperative Information Systems, 12(5),
1997.

[2] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web
Services: Concepts, Architecture, and Applications. Springer, 2003.

[3] Anthony Nadalin and Chris Kaler (Eds.). Web Services Federation
Language (WS-Federation), July 2003. http://www-128.ibm.com/
developerworks/library/specification/ws-fed/.

[4] Anthony Nadalin and Martin Gudgin (Eds.). Web Services Trust
Language (WS-Trust), February 2005. http://www-128.ibm.com/
developerworks/library/specification/ws-trust/.

[5] Apache. Agila BPEL. http://incubator.apache.org/projects/
agila/index.html.

[6] Apache. Xalan-Java 2.6.0. http://xml.apache.org/xalan-j/.

[7] Apache. Sandehsa 1.0. http://ws.apache.org/sandesha/sandesha1.
html, July 2005.

[8] Apache. WSS4J 1.1. http://ws.apache.org/ws-fx/wss4j/, March
2005.

[9] Apache. Geronimo 1.0. http://geronimo.apache.org/, January 2006.

[10] Apache. Kandula 0.2. http://ws.apache.org/kandula/, May 2006.

[11] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann.
Overview of CaesarJ. Transactions on AOSD I, 3880:135 – 173, 2006.

[12] Assaf Arkin. Business Process Modeling Language (BPML) Version 1.0.
http://www.bpmi.org/bpml.esp, June 2002.

171

[13] Assaf Arkin, Sid Askary, Ben Bloch, et al. Web Services Busi-
ness Process Execution Language 2.0, Public Review Draft,
23 August 2006. http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-specification-draft.html.

[14] Assaf Arkin et al. Web Service Choreography Interface (WSCI) 1.0. http:
//www.w3.org/TR/wsci/, August 2002.

[15] Ali Arsanjani. Rule Object 2001: A Pattern Language for Adaptive and
Scalable Business Rule Construction. In Proc. of the 8th Conference on
Pattern Languages of Programs (PLoP), pages 370–402, Washington DC,
USA, September 2001. IEEE Computer Society.

[16] Boris Bachmendo and Rainer Unland. Aspect-based Workflow Evolution.
In Proc. of the Workshop on Aspect-Oriented Programming and Separation
of Concerns, August 2001.

[17] Paulo Barthelmess and Jacques Wainer. Workflow Systems: a few Defi-
nitions and a few Suggestions. In Proc. of Conference on Organizational
Computing Systems (COCS), pages 138–147. ACM Press, August 1995.

[18] BEA and IBM. BPELJ: BPEL for Java, Joint White Paper.
http://www-128.ibm.com/developerworks/library/specification/
ws-bpelj/, March 2004.

[19] Boualem Benatallah, Quan Z. Sheng, and Marlon Dumas. The Self-Serv
Environment for Web Services Composition. IEEE Internet Computing,
7(1):40–48, 2003.

[20] Benjamin Grosof and Harold Boley. Introduction to RuleML,
Talk at the joint US/EU ad hoc Agent Markup Language
Committee. http://ebusiness.mit.edu/bgrosof/paps/
talk-ruleml-jc-ovw-102902-main.pdf, October 2002.

[21] Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, and Ralf
Steinmetz. Heuristics for QoS-aware Web Service Composition. In Proc.
of the 4th IEEE International Conference on Web Services (ICWS), pages
72–82. IEEE Computer Society, September 2006.

[22] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Ostermann.
Virtual Machine Support for Dynamic Join Points. In Proc. of the
3rd International Conference on Aspect-Oriented Software Development
(AOSD), pages 83–92. ACM Press, March 2004.

[23] Ron Bodkin. Application Security Aspects, March 2005. Invited talk at
the industry track of the 4th International Conference on Aspect-Oriented
Software Development (AOSD).

[24] Jonas Bonér and Alexandre Vasseur. AspectWerkz. http://
aspectwerkz.codehaus.org/index.html, February 2004.

[25] Don Box and Francisco Curbera (Eds.). Web Services Addressing (WS-
Addressing). http://www.w3.org/Submission/ws-addressing/, Au-
gust 2004.

172

[26] Mathieu Braem, Kris Verlaenen, Niels Joncheere, Wim Vanderperren,
Ragnhild Van Der Straeten, Eddy Truyen, Wouter Joosen, and Viviane
Jonckers. Isolating Process-Level Concerns using Padus. In Proc. of the
4th International Conference on Business Process Management (BPM),
volume 4102 of LNCS, pages 113–128. Springer, September 2006.

[27] Bill Burke, Marc Fleury, Adrian Brock, et al. JBoss AOP 1.3.0. http:
//aop.jboss.org, 2005.

[28] Christoph Bussler. Adaptation in Workflow Management. In Proc. of the
5th International Conference on the Software Process (ICSP), June 1998.

[29] Barbara Carminati, Elena Ferrari, and Patrick C. K. Hung. Security Con-
scious Web Service Composition. In Proc. of the 4th IEEE International
Conference on Web Services (ICWS), pages 489–496. IEEE Computer
Society, September 2006.

[30] Fabio Casati, Stefano Ceri, Barbara Pernici, and Giuseppe Pozzi. Work-
flow Evolution. Data & Knowledge Engineering, 24(3):211–238, 1998.

[31] Fabio Casati, Ski Ilnicki, Li jie Jin, Vasudev Krishnamoorthy, and Ming-
Chien Shan. Adaptive and Dynamic Service Composition in eFlow. In
Proc. of the 12th International Conference on Advanced Information Sys-
tems Engineering (CAiSE), volume 1789 of LNCS, pages 13–31. Springer,
June 2000.

[32] Anis Charfi, Rania Khalaf, and Nirmal Mukhi. QoS-aware Web Service
Compositions Using Non-Intrusive Policy Attachment to BPEL. In Proc.
of the 5th International Conference on Service Oriented Computing (IC-
SOC), Industry track, to appear. Springer, September 2007.

[33] Anis Charfi and Mira Mezini. Aspect-Oriented Web Service Composition.
In Student Extravaganza of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD), Poster Session, March 2004.

[34] Anis Charfi and Mira Mezini. Aspect-Oriented Web Service Composition
with AO4BPEL. In Proc. of the 2nd European Conference on Web Services
(ECOWS), volume 3250 of LNCS, pages 168–182. Springer, September
2004.

[35] Anis Charfi and Mira Mezini. Hybrid Web Service Composition: Business
Processes Meet Business Rules. In Proc. of the 2nd International Confer-
ence on Service Oriented Computing (ICSOC), pages 30–38. ACM Press,
November 2004.

[36] Anis Charfi and Mira Mezini. Using Aspects for Security Engineering of
Web Service Compositions. In Proc. of the 3rd IEEE International Con-
ference on Web Services (ICWS), pages 59–66. IEEE Computer Society,
July 2005.

[37] Anis Charfi and Mira Mezini. Aspect-Oriented Web Service Com-
position in AO4BPEL, Demo at the 5th International Conference on
Aspect-Oriented Software Development (AOSD). http://aosd.net/
2006/demos/index.php, March 2006.

173

[38] Anis Charfi and Mira Mezini. Aspect-Oriented Workflow Languages.
In Proc. of the 14th International Conference on Cooperative Informa-
tion Systems (CoopIS), volume 4275 of LNCS, pages 183–200. Springer,
November 2006.

[39] Anis Charfi and Mira Mezini. Middleware Support for BPEL Workflows
in the AO4BPEL Engine. In Demo Session at the 4th International Con-
ference on Business Process Management (BPM), September 2006.

[40] Anis Charfi and Mira Mezini. AO4BPEL: An Aspect-Oriented Extension
to BPEL. World Wide Web Journal: Recent Advances in Web Services
(special issue), March 2007.

[41] Anis Charfi, Benjamin Schmeling, Andreas Heizenreder, and Mira
Mezini. Reliable, Secure and Transacted Web Service Composition with
AO4BPEL. In Proc. of the 4th IEEE European Conference on Web Ser-
vices (ECOWS), pages 23–34. IEEE Computer Society, December 2006.

[42] Anis Charfi, Benjamin Schmeling, and Mira Mezini. Reliable Messaging
for BPEL Processes. In Proc. of the 4th IEEE International Conference on
Web Services (ICWS), pages 293–302. IEEE Computer Society, Septem-
ber 2006.

[43] Chris Ferris and David Langworthy (Eds.). Web Services Reliable Mes-
saging Protocol (WS-ReliableMessaging). http://www-128.ibm.com/
developerworks/library/specification/ws-rm/, February 2005.

[44] Chris Kaler and Anthony Nadalin (Eds.). Web Services Security Policy
Language (WS-SecurityPolicy) Version 1.1. http://www-128.ibm.com/
developerworks/library/ws-secpol/, July 2005.

[45] Chris Sharp (Eds.). Web Services Policy Attachment (WS-
PolicyAttachment). ftp://www6.software.ibm.com/software/
developer/library/ws-polat.pdf, September 2004.

[46] Christoph Ferris. Critical Comparison of WS-RM and WS-R, OASIS Sym-
posium: Reliable Infrastructures for XML. http://www.oasis-open.
org/events/symposium/slides/ferris.ppt, April 2004.

[47] Maria A. Cibran, Maja D’Hondt, and Viviane Jonckers. Aspect-Oriented
Programming for Connecting Business Rules. In Proc. of the 6th Interna-
tional Conference on Business Information Systems (BIS), March 2005.

[48] Maria A. Cibran and Bart Verheecke. Dynamic Business Rules for Web
Service Composition. In Proc. of the Dynamic Aspects Workshop (DAW)
in conjunction with AOSD, March 2005.

[49] Mariano Cilia, Michael Haupt, Mira Mezini, and Alejandro P. Buchmann.
The Convergence of AOP and Active Databases: Towards Reactive Mid-
dleware. In Proc. of the 2nd International Conference on Generative Pro-
gramming and Component Engineering (GPCE), volume 2830 of LNCS,
pages 169–188. Springer, September 2003.

174

[50] James Clark and Steve DeRose. XML Path Language (XPath) 1.0. http:
//www.w3.org/TR/xpath. W3C Recommendation 16 November 1999.

[51] Cape Clear. Cape Clear Enterprise Server Bus 6.5. http://www.
capeclear.com/products/cc6.shtml.

[52] Cape Clear. Cape Clear Orchestrator 6.5. http://www.capeclear.com/
products/orchestrator.shtml.

[53] Adrian Colyer, Andy Clement, George Harley, and Matthew Webster.
Eclipse AspectJ: Aspect-Oriented Programming with AspectJ and the
Eclipse AspectJ Development Tools. Addison Wesley, 2005.

[54] AOSD Community. Aspect-Oriented Software Development Community
and Conference. http://www.aosd.net.

[55] Thomas Cottenier and Tzilla Elrad. Dynamic and Decentralized Service
Composition with Aspect-Sensitive Services. In Proc. of the 1st Interna-
tional Conference on Web Information Systems and Technologies (WE-
BIST), pages 56–63, May 2005.

[56] Carine Courbis and Anthony Finkelstein. Towards an Aspect-weaving
BPEL-engine. In Proc. of the 3rd Workshop on Aspects, Components,
and Patterns for Infrastructure Software (ACP4IS), March 2004.

[57] Carine Courbis and Anthony Finkelstein. Towards Aspect Weaving Ap-
plications. In Proc. of the 27th International Conference on Software
Engineering (ICSE), pages 69–77. ACM Press, May 2005.

[58] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal
Mukhi, and Sanjiva Weerawarana. Colombo: Lightweight Middleware for
Service-Oriented Computing. IBM Systems Journal, 44(4):799–820, 2005.

[59] Francisco Curbera, Yaron Goland, Johannes Klein, et al. Business Process
Execution Language for Web Services (BPEL4WS) Version 1.1. http:
//www-106.ibm.com/developerworks/library/ws-bpel/, May 2003.

[60] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and San-
jiva Weerawarana. The Next Step in Web Services. Commun. ACM,
46(10):29–34, 2003.

[61] Francisco Curbera, Rania Khalaf, William Nagy, and Sanjiva Weer-
awarana. Implementing BPEL4WS: The Architecture of a BPEL4WS
Implementation. In Proc. of the 10th GGF Workshop on Workflow in
Grid Systems, March 2004.

[62] Bill Curtis, Marc I. Kellner, and Jim Over. Process Modeling. Commun.
ACM, 35(9):75–90, 1992.

[63] David Langworthy (Eds.). Web Services Coordination (WS-
Coordination). ftp://www6.software.ibm.com/software/developer/
library/WS-Coordination.pdf, November 2004.

[64] Pierre Delisle, Jan Luehe, and Mark Roth. Java Server Pages Specifica-
tion, Version 2.1. http://java.sun.com/products/jsp/.

175

[65] Linda G. DeMichiel et al. Enterprise JavaBeans Specification, Version
2.0. http://java.sun.com/products/ejb/docs.html, August 2001.

[66] Frank DeRemer and Hans Kron. Programming-in-the-Large versus
Programming-in-the-Small. IEEE Transactions on Software Engineering,
2(2):80–86, 1976.

[67] Maja D’Hondt. Hybrid Aspects for Integrating Rule-based Knowledge and
Object-Oriented Functionality. PhD thesis, Vrije Universit Brussel, Brus-
sel, Belgium, 2004.

[68] Maja D’Hondt, Kris Gybels, and Viviane Jonckers. Seamless Integration
of Rule-based Knowledge and Object-oriented Functionality with Linguis-
tic Symbiosis. In Proc. of the 19th ACM Symposium on Applied Computing
(SAC), pages 1328–1335, Nicosia, Cyprus, March 2004. ACM Press.

[69] Maja D’Hondt and Viviane Jonckers. Hybrid Aspects for Weaving
Object-oriented Functionality and Rule-based Knowledge. In Proc. of the
3rd International Conference on Aspect-Oriented Software Development
(AOSD), pages 132–140. ACM Press, March 2004.

[70] Digite. Enterprise BPM 4.2. http://www.digite.com/products/
digite_ent_business-process.htm.

[71] Remco M. Dijkman and Marlon Dumas. Service-Oriented Design: A
Multi-Viewpoint Approach. International Journal of Cooperative Infor-
mation Systems, 13(4):337–368, 2004.

[72] Frederic Duclos, Jacky Estublier, and Philippe Morat. Describing and Us-
ing Non-functional Aspects in Component Based Applications. In Proc.
of the 1st International Conference on Aspect-Oriented Software Develop-
ment (AOSD), pages 65–75. ACM Press, April 2002.

[73] Michael Eichberg and Mira Mezini. Alice: Modularization of Middleware
using Aspect-Oriented Programming. In Proc. of the 5th International
Workshop Software Engineering and Middleware (SEM), volume 3437 of
LNCS, pages 47–63. Springer, March 2005.

[74] Michael Eichberg, Mira Mezini, and Klaus Ostermann. Pointcuts as Func-
tional Queries. In Proc. of the 2nd Asian Symposium on Programming
Languages and Systems (APLAS), volume 3302 of LNCS, pages 366–382.
Springer, November 2004.

[75] Clarence Ellis, Karim Keddara, and Gzregorz Rozenberg. Dynamic
Change within Workflow Systems. In Proc. of the Conference on Organi-
zational Computing Systems (COCS), pages 10–21. ACM Press, August
1995.

[76] Abdelkarim Erradi, Piyush Maheshwari, and Vladimir Tosic. Policy-
driven Middleware for Self-Adaptation of Web Service Compositions. In
Proc. of the 7th International Middleware Conference (Middleware), vol-
ume 4290 of LNCS, pages 62–80. Springer, November 2006.

176

[77] Onyeka Ezenwoye and Sayed Sadjadi. TRAP/BPEL: A Framework for
Dynamic Adaptation of Composite Services. Technical Report FIU-SCIS-
2006-06-02, Florida International University, June 2006.

[78] Johan Fabry and Thomas Cleenewerck. Aspect-Oriented Domain Spe-
cific Languages for Advanced Transaction Management. In Proc. of the
7th International Conference on Enterprise Information Systems (ICEIS),
pages 428–432, May 2005.

[79] Donald F. Ferguson, Brad Lovering, Tony Storey, and John Shewchuk.
Secure, Reliable, Transacted Web Services: Architecture and Com-
position. http://www-106.ibm.com/developerworks/webservices/
library/ws-transpec/, 2003.

[80] Andrea Ferrara. Web Services: a Process Algebra Approach. In Proc.
of the 2nd International Conference on Service Oriented Computing (IC-
SOC), pages 242–251. ACM Press, November 2004.

[81] Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Program-
ming is Quantification and Obliviousness. In Proc. of the Workshop on
Advanced Separation of Concerns in conjunction with OOPSLA, pages
21–35, October 2000.

[82] Tony Flechter, Peter Furniss, Alastair Green, and Robert Haugen. BPEL
and Business Transaction Management, Choreology submission to OASIS,
2003.

[83] Patric Fornasier and Pawel Kowalski. Bexee - BPEL Execution Engine.
http://bexee.sourceforge.net/.

[84] Ernest Friedmann-Hill. JESS: The Java Expert System Shell. http:
//www.jessrules.com.

[85] Dimitrios Georgakopoulos, Mark F. Hornick, and Amit P. Sheth. An
Overview of Workflow Management: from Process Modeling to Workflow
Automation Infrastructure. Distributed and Parallel Databases, 3(2):119–
153, 1995.

[86] Gregor Kiczales and Andreas Paepcke. Open Implementations
and Metaobject Protocols. http://www2.parc.com/csl/groups/sda/
publications/papers/Kiczales-TUT95/for-web.pdf, 1996.

[87] Object Management Group. CORBA Component Model 3.0. Specification
formal/02-06-65, OMG, June 2002.

[88] Martin Gudgin and Anthony Nadalin (Eds.). Web Service Secure Conver-
sation Language (WS-SecureConversation) 1.0. http://specs.xmlsoap.
org/ws/2005/02/sc/WS-SecureConversation.pdf, February 2005.

[89] Kris Gybels and Johan Brichau. Arranging Language Features for more
Robust Pattern-based Crosscuts. In Proc. of the 2nd International Con-
ference on Aspect-Oriented Software Development(AOSD), pages 60–69.
ACM Press, March 2003.

177

[90] Hugo Haas and Allen Brown. UDDI Version 3.0, UDDI Spec Techni-
cal Committee Draft 19 October 2004. http://www.oasis-open.org/
committees/uddi-spec/doc/tcspecs.htm#uddiv3.

[91] Hugo Haas and Allen Brown. Web Services Glossary, W3C Working Group
Note 11 February 2004. http://www.w3.org/TR/ws-gloss/.

[92] Rachid Hamadi and Boualem Benatallah. A Petri net-based Model for
Web Service Composition. In Proc. of the 14th Australasian Database
Conference (ADC), pages 191–200, February 2003.

[93] Yanbo Han and Amit Sheth. On Adaptive Workflow Modeling. In Proc.
of the 4th International Conference on Information Systems Analysis and
Synthesis (ISAS), pages 108–116, July 1998.

[94] Yanbo Han, Amit Sheth, and Christoph Bussler. A Taxonomy of Adap-
tive Workflow Management. In Proc. of the Workshop Towards Adaptive
Workflow Systems in conjunction with CSCW, November 1998.

[95] David Harel. On Visual Formalisms. Communications of the ACM, 31(5),
1988.

[96] Erik Hilsdale and Jim Hugunin. Advice Weaving in AspectJ. In Proc.
of the 3rd International conference on Aspect-oriented software develop-
ment(AOSD), pages 26–35. ACM Press, March 2004.

[97] Robert Hirschfeld and Katsuya Kawamura. Dynamic Service Adaptation.
In Proc. of the 4th International Workshop on Distributed Auto-adaptive
and Reconfigurable Systems (DARES), Tokyo, Japan, March 2004.

[98] Charles Antony Richard Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[99] Pavel Hruby. Specification of Workflow Management Systems with UML.
In Proc. of the Workshop on Implementation and Application of Object-
oriented Workflow Management Systems in conjunction with OOPLSA,
October 1998.

[100] Michael N. Huhns and Munindar P. Singh. Service-Oriented Computing:
Key Concepts and Principles. IEEE Internet Computing, 09(1):75–81,
2005.

[101] IBM. WebSphere Enterprise Service Bus. http://www-306.ibm.com/
software/integration/wsesb/.

[102] IBM. WebSphere MQ Workflow. http://www-306.ibm.com/software/
integration/wmqwf/.

[103] IBM. WebSphere Process Server Version 6.0. http://www-306.ibm.com/
software/integration/wps/.

[104] IBM. BPWS4J: A Platform for Creating and Executing BPEL4WS Pro-
cesses. http://www.alphaworks.ibm.com/tech/bpws4j, August 2002.

178

[105] IBM and Microsoft. Security in a Web Services World: A Proposed Ar-
chitecture and Roadmap.

[106] IBM and SAP. WS-BPEL Extension for People - BPEL4People.
http://www-128.ibm.com/developerworks/webservices/library/
specification/ws-bpel4people/, July 2005.

[107] IDS Scheer. Integrated Process and Rules Modeling with ARIS Platform.
http://www.ids-scheer.com/belgium/profile/86648, May 2006.

[108] ILOG. JRules. http://www.ilog.com/products/jrules.

[109] ILOG. Press Release. http://ilog.com/corporate/releases/us/
050706_oracle.cfm, July 2005.

[110] Intalio. Process eXecution Engine (PXE). http://pxe.fivesight.com.

[111] Stefan Jablonski. MOBILE: A Modular Workflow Model and Architec-
ture. In Proc. of the 4th International Working Conference on Dynamic
Modelling and Information Systems (DYNMOD), pages 1–30, September
1994.

[112] Peter Jackson. Introduction to Expert Systems. Addison-Wesley, 1986.

[113] Jeffry. Schlimmer (Eds.). Web Services Policy Framework (WS-
Policy). ftp://www6.software.ibm.com/software/developer/
library/ws-policy.pdf, September 2004.

[114] Rod Johnson. Introduction to the Spring Framework. http://www.
theserverside.com/articles/article.tss?l=SpringFramework, May
2005.

[115] Dimka Karastoyanova, Alejandro Houspanossian, Mariano Cilia, Frank
Leymann, and Alejandro P. Buchmann. Extending BPEL for Run Time
Adaptability. In Proc. of the 9th IEEE International Enterprise Dis-
tributed Object Computing (EDOC), pages 15–26. IEEE Computer So-
ciety, September 2005.

[116] Rania Khalaf, Nirmal Mukhi, and Sanjiva Weerawarana. Service-Oriented
composition in BPEL4WS. In Proc. of the 12th International World Wide
Web Conference (Alternate Paper Tracks), May 2003.

[117] Gregor Kiczales. The Fun Has Just Begun. http://aosd.net/archive/
2003/kiczales-aosd-2003.ppt, March 2003. Keynote at AOSD 2003.

[118] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An Overview of AspectJ. In Proc. of the 15th
European Conference on Object-Oriented Programming (ECOOP), volume
2072 of LNCS, pages 327–353. Springer, June 2001.

[119] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Proc. of the 11th European Conference on Object-
Oriented Programming (ECOOP), volume 1241 of LNCS, pages 220–242.
Springer, June 1997.

179

[120] Gregor Kiczales and Mira Mezini. Aspect-Oriented Programming and
Modular Reasoning. In Proc. of the 27th International Conference on
Software Engineering (ICSE), pages 49–58. ACM Press, May 2005.

[121] Gregor Kiczales and Mira Mezini. Separation of Concerns with Proce-
dures, Annotations, Pointcut and Advice. In Proc. of the 19th European
Conference on Object-Oriented Programming (ECOOP), volume 3586 of
LNCS, pages 195–213. Springer, July 2005.

[122] Ramnivas Laddad. AspectJ in Action. Manning Publications, 2003.

[123] Frank Leymann. Web Services Flow Language (WSFL) 1.0. http://
www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
May 2001.

[124] Frank Leymann and Wolfgang Altenhuber. Managing Business Processes
as an Information Resource. IBM Systems Journal, 33(2):326–348, 1994.

[125] Frank Leymann and Dieter Roller. Workflow-based Applications. IBM
Systems Journal, 36(1):102–123, 1997.

[126] Frank Leymann and Dieter Roller. Production Workflows. Prentice-Hall,
2000.

[127] ActiveBPEL LLC. ActiveBPEL 2.0. http://www.activebpel.org.

[128] Hidehiko Masuhara and Gregor Kiczales. A Modeling Framework for
Aspect-oriented Mechanisms. In Proc. of the 17th European Conference
on Object-Oriented Programming (ECOOP), volume 2734 of LNCS, pages
2–28. Springer, July 2003.

[129] Mathias Weske and Gottfried Vossen. Handbook on Architectures of Infor-
mation Systems, chapter Workflow Languages, pages 359–379. Springer,
Berlin, 1998.

[130] Scott McCready. There is more than one Kind of Workflow Software.
ComputerWorld, 2, November 1992.

[131] Joao Meidanis, Gottfried Vossen, and Mathias Weske. Using Workflow
Management in DNA Sequencing. In Proc. of the 1st International Confer-
ence on Cooperative Information Systems (CoopIS), pages 114–123. IEEE
Computer Society, June 1996.

[132] Microsoft. BizTalk Server 2006. http://www.microsoft.com/germany/
biztalk/default.mspx.

[133] Robin Milner. A Calculus of Communicating Systems. Springer, 1982.

[134] OASIS. Web Services Business Process Execution Language (WS-BPEL)
Technical Committee. http://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=wsbpel.

[135] OASIS. Web Services Reliable Messaging TC WS-Reliability 1.1, 15
November 2004. http://docs.oasis-open.org/wsrm/ws-reliability/
v1.1/wsrm-ws_reliability-1.1-spec-os.pdf.

180

[136] OASIS. Web Services Security: SOAP Message Security 1.0,
March 2004. http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0.pdf.

[137] OASIS WS-TX TC. Web Services Atomic Transaction (WS-
AtomicTransaction) 1.1, Committee Draft 01, March 15, 2006. http:
//docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-cd-01.pdf.

[138] OASIS WS-TX TC. Web Services Business Activity (WS-
BusinessActivity) 1.1, Committee Draft 01, March 15, 2006. http:
//docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-cd-01.pdf.

[139] OASIS WSRM TC. Web Services Reliability Options: A Com-
parison of Web Services Reliable Messaging Specifications. http:
//www.oasis-open.org/events/symposium/slides/wsrm_notes.pdf,
May 2004.

[140] Martin S. Olivier, Reind P. van de Riet, and Ehud Gudes. Specifying
Application-Level Security in Workflow Systems. In Proc. of the 9th
International Workshop on Database and Expert Systems Applications
(DEXA), pages 346–351, August 1998.

[141] Oracle. An Introduction to Oracle Web Services Manager, Oracle White
Paper. http://www.oracle.com/technology/products/webservices_
manager/pdf/oracle_wsm_402_wp.pdf, May 2005.

[142] Oracle. BPEL + Business Rules, Feature Preview Webinar.
http://www.oracle.com/technology/products/ias/bpel/pdf/
bpelandbusinessrules.pdf, February 2005.

[143] Oracle. BPEL Process Manager 10.1.2. http://www.oracle.com/
technology/products/ias/bpel/index.html, August 2005.

[144] Oracle. Securing BPEL Processes and Services Part 1, Webinar.
http://www.oracle.com/technology/products/ias/bpel/htdocs/
webinars.html, September 2005.

[145] Guadalupe Ortiz and Frank Leymann. Combining WS-Policy and Aspect-
Oriented Programming. In Proc. of the International Conference on Inter-
net and Web Applications and Services (ICIW), pages 143–148, February
2006.

[146] Guadalupe Ortiz, Juan Hernández Núñez, and Pedro J. Clemente. How
to Deal with Non-Functional Properties in Web Service Development. In
Proc. of the 5th International Conference on Web Engineering (ICWE),
volume 3579 of LNCS, pages 98–103. Springer, July 2005.

[147] Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive
Pointcuts for Increased Modularity. In Proc. of the 19th European Confer-
ence on Object-Oriented Programming (ECOOP), volume 3586 of LNCS,
pages 214–240. Springer, 2005.

181

[148] Mike P. Papazoglou. Service-Oriented Computing: Concepts, Character-
istics and Directions. In Proc. of the 4th International Conference on Web
Information Systems Engineering (WISE), pages 3–12. IEEE Computer
Society, December 2003.

[149] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and Gerard Florin.
JAC: a Flexible Solution for Aspect-Oriented Programming in Java. In
Proc. of the 3rd International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns (Reflection), volume 2192 of LNCS,
pages 1–24. Springer, 2001.

[150] Chris Peltz. Web Services Orchestration and Choreography. Computer
Journal, 36(10):46–52, October 2003.

[151] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Darmstadt
University of Technology, Darmstadt, Germany, 1961.

[152] Roman Pichler, Klaus Ostermann, and Mira Mezini. On Aspectualizing
Component Models. Software Practice and Experience, 33(10):957–974,
March 2003.

[153] Andrei Popovici, Gustavo Alonso, and Thomas R. Gross. Just-in-time
Aspects: Efficient Dynamic Weaving for Java. In Proc. of the 2nd Inter-
national Conference on Aspect-Oriented Software Development (AOSD),
pages 100–109. ACM Press, March 2003.

[154] Andrei Popovici, Gustavo Alonso, and Thomas R. Gross. Spontaneous
Container Services. In Proc. of the 17th European Conference on Object-
Oriented Programming (ECOOP), volume 2743 of LNCS, pages 29–53.
Springer, July 2003.

[155] Awais Rashid and Ruzanna Chitchyan. Persistence as an Aspect. In
Proc. of the 2nd International Conference on Aspect-Oriented Software
Development (AOSD), pages 120–129. ACM Press, March 2003.

[156] Manfred Reichert, Thomas Bauer, and Peter Dadam. Enterprise-Wide
and Cross-Enterprise Workflow-Management: Challenges and Research
Issues for Adaptive Workflows. In Proc. of the Workshop on Enterprise-
wide and Cross-enterprise Workflow Management, pages 56–64, October
1999.

[157] Manfred Reichert and Peter Dadam. ADEPT flex -Supporting Dynamic
Changes of Workflows Without Losing Control. Journal of Intelligent
Information Systems, 10(2):93–129, 1998.

[158] Manfred Reichert, Stefanie Rinderle, and Peter Dadam. ADEPT Work-
flow Management System: Flexible Support for Enterprise-Wide Business
Processes. In Proc. of the 1st International Conference on Business Pro-
cess Management (BPM), volume 2678 of LNCS, pages 370–379. Springer,
June 2003.

[159] Florian Rosenberg and Schahram Dustdar. Business Rules Integration
in BPEL - A Service-Oriented Approach. In Proc. of the 7th Inter-
national Conference on E-Commerce Technology (CEC), pages 476–479.
IEEE Computer Society, July 2005.

182

[160] Ronald G. Ross. Principles of the Business Rules Approach. Addison-
Wesley, 2003.

[161] Wasim Sadiq and Maria E. Orlowska. On Business Process Model Trans-
formations. In Proc. of the 19th International Conference on Conceptual
Modeling (ER), volume 1920 of LNCS, pages 267–280. Springer, October
2000.

[162] Gwen Salaun, Lucas Bordeaux, and Marco Schaerf. Describing and Rea-
soning on Web Services using Process Algebra. In Proc. of the 3rd Interna-
tional Conference on Web Services (ICWS), pages 43–51. IEEE Computer
Society, June 2004.

[163] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-To-End
Arguments in System Design. ACM Transactions on Computer Systems,
2(4):277–288, November 1984.

[164] Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori. A Selective, Just-
in-time Aspect Weaver. In Proc. of the 2nd International Conference on
Generative Programming and Component Engineering (GPCE), volume
2830 of LNCS, pages 189–208. Springer, September 2003.

[165] Rainer Schmidt and Uwe Assmann. Extending Aspect-Oriented-
Programming in Order to Flexibly Support Workflows. In Proc. of the
Aspect-Oriented Programming Workshop in conjunction with ICSE, pages
41–46, April 1998.

[166] SEEBURGER. Business Integration Server. http://www.seebeyond.
com/software/ican.asp.

[167] David Skogan, Roy Gronmo, and Ida Solheim. Web Service Composition
in UML. In Proc. of the 8th International IEEE Enterprise Distributed
Object Computing Conference (EDOC), pages 47–57. IEEE Computer So-
ciety, September 2004.

[168] Lombardi Software. Teamworks Enterprise Edition. http://www.
lombardisoftware.com/enterprise-bpm-software.php.

[169] OpenLink Software. Virtuoso Universal Server 4.5. http://www.
openlinksw.com/virtuoso/index.htm.

[170] Stefan Jablonski and Christoph Bussler. Workflow Management: Model-
ing Concepts, Architecture and Implementation. International Thomson
Computer Press, London, UK, 1996.

[171] Edward A. Stohr and J. Leon Zhao. Workflow Automation: Overview
and Research Issues. Information Systems Frontiers, 3(3):281–296, 2001.

[172] Davy Suvee, Wim Vanderperren, and Viviane Jonckers. JAsCo: an
Aspect-oriented Approach Tailored for Component based Software Devel-
opment. In Proc. of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD), pages 21–29. ACM Press, March 2003.

[173] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Longman Publishing, 2002.

183

[174] Stefan Tai, Rania Khalaf, and Thomas Mikalsen. Composition of Coor-
dinated Web Services. In Proc. of the 5th International Middleware Con-
ference (Middleware), volume 3231 of LNCS, pages 294–310. Springer,
October 2004.

[175] Peri Tarr, Harold Ossher, Willliam Harrison, and Stanley M. Sutton.
N Degrees of Separation: Multi-dimensional Separation of Concerns.
In Proc. of the 21st International Conference on Software Engineering
(ICSE), pages 107–119. ACM Press, 1999.

[176] Satish Thatte. XLANG, Services for Business Process Design. http://
www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm, 2001.

[177] The Business Rules Group. Defining Business Rules, What are they really?
. http://www.businessrulesgroup.org, July 2000.

[178] The Workflow Management Coalition. WfMC. http://www.wfmc.org/.

[179] Simon Thompson and Brian Odgers. Aspect-Oriented Process Engineer-
ing. In Proc. of the Workshop on Object-Oriented Technology in conjunc-
tion with ECOOP, June 1999.

[180] Wil van der Aalst and Arthur Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

[181] Wil M. P. van der Aalst. The Application of Petri Nets to Workflow
Management. Journal of Circuits, Systems, and Computers, 8(1):21–66,
1998.

[182] Wil M. P. van der Aalst. Generic Workflow Models: How to Handle Dy-
namic Change and Capture Management Information? In Proc. of the 4th
International Conference on Cooperative Information Systems (CoopIS),
pages 115–126. IEEE Computer Society, September 1999.

[183] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski,
and Alistair P. Barros. Workflow Patterns. Distributed and Parallel
Databases, 14(1):5–51, 2003.

[184] Bart Verheecke, Maria A. Cibran, Davy Suvee, and Viviane Jonckers.
AOP for Dynamic Configuration and Management of Web Services in
Client Applications. International Journal on Web Services Research
(JWSR), 1(3):25–41, 2004.

[185] Vijay Atluri. Security for Workflow Systems. Information Security Tech-
nical Report, 6(2):59–68, 2001.

[186] Barbara von Halle. Business Rules Applied: Building Better Systems Us-
ing the Business Rules Approach. Wiley, 2001.

[187] W3C. OWL Web Ontology Language Overview, W3C Recommendation
10 February 2004. http://www.w3.org/TR/owl-features.

[188] W3C. Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May
2000. http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

184

[189] W3C. Web Services Description Language (WSDL) 1.1, W3C Note 15
March 2001. http://www.w3.org/TR/wsdl.

[190] W3C. XML Query Language (XQuery) Version 1.0, W3C Candidate Rec-
ommendation 8 June 2006. http://www.w3.org/TR/xquery/.

[191] W3C. Web Services Choreography Description Language Version 1.0 (WS-
CDL). http://www.w3.org/TR/ws-cdl-10/, October 2004.

[192] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey,
and Donald F. Ferguson. Web Services Platform Architecture : SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging,
and More. Pearson Education, 2005.

[193] Mathias Weske. Flexible Modeling and Execution of Workflow Activities.
In Proc. of the 31st Hawaii International Conference on System Sciences
(HICSS)-Volume 7, pages 713–723. IEEE Computer Society, March 1998.

[194] Mathias Weske. Formal Foundation and Conceptual Design of Dynamic
Adaptations in a Workflow Management System. In Proc. of the 34th
Hawaii International Conference on System Sciences (HICSS), page 7051.
IEEE Computer Society, January 2001.

[195] Mathias Weske, Gottfried Vossen, Claudia Bauzer Medeiros, and Fatima
Pires. Workflow Management in Geo-processing Applications. In Proc. of
the 6th International ACM symposium on Advances in Geographic Infor-
mation Systems (GIS), pages 88–93, November 1998.

[196] WFMC. Workflow Management Coalition Terminology and Glossary,
Document Number WFMC-TC-1011, Version 3. http://www.wfmc.org/
standards/docs/TC-1011_term_glossary_v3.pdf, February 1999.

[197] Bart De Win. Engineering Application-level Security through Aspect-
Oriented Software Development. PhD thesis, Department of Computer
Science, K.U.Leuven, Leuven, Belgium, 2004.

[198] Dirk Wodtke, Jeanine Weisenfels, Gerhard Weikum, and Angelika Kotz
Dittrich. The Mentor Project: Steps Toward Enterprise-Wide Workflow
Management. In Proc. of the 12th International Conference on Data Engi-
neering (ICDE), pages 556–565. IEEE Computer Society, February 1996.

[199] WS-I. Web Services Interoperability Organization. http://www.ws-i.
org/.

[200] Jian Yang, Mike P. Papazoglou, and Bart Orriens andWillem-Jan van den
Heuvel. A Rule Based Approach to the Service Composition Life-Cycle.
In Proc. of the 4th International Conference on Web Information Systems
Engineering (WISE), pages 295–298. IEEE Computer Society, December
2003.

[201] Charles Zhang and Hans Arno Jacobsen. Resolving Feature Convolution
in Middleware Systems. In Proc. of the 19th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 188–205. ACM Press, October 2004.

185

Curriculum Vitae

• March 19, 1979
Born in Sfax, Tunisia

• 09/1984-06/1990
Primary School Elbadr, Sfax

• 09/1990-06/1995
Secondary School Chihia, Sfax

• 09/1995-06/1997
Secondary School Habib Maazoun, Sfax
Graduated with High school diploma (Baccalauréat)

• 09/1997-07/1998
Heidelberg University
Preparation year for studies at German universities at the college for for-
eign students

• 10/1998-07/2003
Munich University of Technology
Studies in Computer Science. Graduated as Diplom-Informatiker
(comparable to a master degree)

• 12/2003-02/2007
Darmstadt University of Technology
PhD Student in the Software Technology Group of Prof. Mira
Mezini. Graduated with a doctoral degree

186

